Chứng minh (3n)^100 chia hết cho 81 với mọi giá trị
Chứng minh (3n)100 chia hết cho 81 với mọi số tự nhiên n
Ta có (3n)100=3100n100=(34)25n100=8125n100\(⋮\)81
Ta có: (3n)100
=3100.n100
=34.396.n100
=81.396.n100
Vì 81 chia hết cho 81
=> 81.396.n100
Vậy (3n)100 chia hết cho 81
Chứng minh rằng (3n)^100 chia hết cho 81 với mọi số tự nhiên n
Giải nhanh nhé
Ta có : ( 3n )100 = ( 3n )4.25 = 34.25.n4.25 = 8125 . n100 chia hết cho 81
Vậy ( 3n )100 chia hết cho 81 ( dpcm )
Chứng minh rằng: (3n)100 chia hết cho 81 với mọi số tự nhiên n.
Chỉ giúp mình nhé cảm ơn.
Ta có:
\(\left(3n\right)^{100}=3^{100}.n^{100}\)
\(=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
Vậy ....
Ta có \(\left(3n\right)^{100}=3^{100}.n^{100}=81^{25}.n^{100}⋮81\forall n\)
Vậy...
~~~~~~~~~~~~~
Ta có \(3n^{100}=3^{100}.n^{100}=3^4.3^{96}.n^{100}\)
\(=81.3^{96}.n^{100}⋮81\)
\(\Rightarrow3n^{100}⋮81\left(dpcm\right)\)
=.=
Cho A=1+3+3^2+3^3+...+(3^3n)+(3^3n+1)+(3^3n+2).Chứng minh A chia hết cho 3 với mọi giá trị của n
Chứng minh rằng :
Số A = (n + 1) . (3n + 2) chia hết cho 2 , với mọi giá trị n
a)Tính giá trị lớn nhất của biểu thức:P=2019-|5-x|
b)Chứng minh rằng:3n+2-2n+2+3n-2n chia hết cho 10 với mọi nEN*.
Giúp mik với làm ơn.Ngày mai mik cần phải nộp bài cho cô.
a: \(P=-\left|5-x\right|+2019\le2019\forall x\)
Dấu '=' xảy ra khi x=5
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Cho A = n^3 + 3n^2 + 2n
a)Chứng minh rằng A chia hết cho 3 với mọi số nguyên n.
b) Tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15.
CHO A = n^3 + 3n^2 + 2n
a, Chứng minh rằng A chia hết cho 3 với mọi n là số nguyên
b, Tìm giá trị nguyên dương của n với n < 10 để A chia hết cho 15
Đặt A = n3 + 3n2 + 5n + 3 . Chứng minh rằng A chia hết cho 3 với mọi giá trị nguyên dương của n.
Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)
=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)
Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n