Giải phương trình: \(x^3+ax+bx+c=0\)
Giải phương trình: \(x^3+ax+bx+c=0\)
Nguyễn Anh Duy Giúp với coim hồi đó giúp ông rồi =))
Bài 1:Viết thuật toán và chương trình giải phương trình bậc 2 ax^2+bx+c=0
Bài 2:viết thuật toán và viết chương trình giải phương trình bậc 1 ax+b=0
Bài 2:
Thuật toán:
B1: Nhập a,b
B2: Kiểm tra nếu a=0 và b=0 thì phương trình có vô số nghiệm
B3: Kiểm tra nếu a=0 thì phương trình vô nghiệm
B4: Kiểm tra nếu a khác 0 thì có nghiệm x=-b/a;
Viết chương trình:
Program HOC24;
var a,b: integer;
x: real;
begin
write('Nhap a; b: '); readln(a,b);
if a=0 and b=0 then write('Phuong trinh co vo so nghiem');
if a=0 then write('Phuong trinh vo nghiem');
if a<>0 then write('x=',-b/a:1:2);
readln
end.
Bài 1:
Thuật toán:
B1: Nhập a,b,c
B2: Tính \(\Delta\) = b2-4ac;
B3: Kiểm tra nếu \(\Delta\) >0 phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}\text{ }}{2a}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
B4: Kiểm tra nếu \(\Delta\)<0 thì phương trình vô nghiệm
B5: Kiểm tra nếu \(\Delta\)=0 phương trình có 2 nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
Viết chương trình:
Program HOC24;
var a,b,c: integer;
x1,x2: real;
denta: longint;
begin
write('Nhap a; b; c: '); readln(a,b,c);
denta:=b*b-4*a*c;
if denta>0 then
begin
write('x1= ',(-b+sqrt(denta))/(2*a):1:2);
write('x2= ',(-b-sqrt(denta))/(2*a):1:2);
end;
if denta<0 then write('Phuong trinh vo nghiem');
if denta=0 then write('x= ',-b/2*a:1:2);
readln
end.
Bài 3: Giải phương trình bậc hai: ax^2+bx+c=0 (a≠0)
Bài 4: Tìm giá trị nhỏ nhất (min) của 1 dãy số nguyên
Bài 3:
#include <bits/stdc++.h>
using namespace std;
double a,b,c,delta,x1,x2;
int main()
{
//freopen("PTB2.inp","r",stdin);
//freopen("PTB2.out","w",stdout);
cin>>a>>b>>c;
delta=(b*b-4*a*c);
if (delta<0) cout<<"-1";
if (delta==0) cout<<fixed<<setprecision(5)<<(-b/(2*a));
if (delta>0)
{
x1=(-b-sqrt(delta))/(2*a);
x2=(-b+sqrt(delta))/(2*a);
cout<<fixed<<setprecision(5)<<x1<<" "<<fixed<<setprecision(5)<<x2;
}
return 0;
}
cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2013. Biết phương trình P(x)=0 có 3 nghiệm phân biệt, còn phương trình P(Q(x))=0 vô nghiệm. CMR: P(2013)>1/64
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)
Viết thuật toán giải phương trình bậc 2
ax2+bx+c=0
B1:nhập a,b,c
B2: Tính đen ta = b^2-4ac
B3: nếu a<0 thì phương trình vô nghiệm =>B6
B4:nếu a=0 thì pt có nghiệm kép x=-b/2a => B6
B5:nếu a>0 thì pt có 2 nghiệm phân biệt x1= (-b+căn đen ta)/2a ; x2= (-b-căn đen ta)/2a =>B6
B6 :kết thúc,
nếu muốn vẽ bằng sơ đồ khối thì xem tại: https://vubinh94.wordpress.com/tag/so-do-khoi-giai-phuong-trinh-bac-2-ax2bxc0/
cho a,b,c là 3 số dương có tổng bằng 12
chứng minh rằng trong 3 phương trình :
x^2 + ax + b =0
x^2+bx+c = 0
x^2 + cx +a =0
có một phương trình vô nghiệm , một phương trình có nghiệm
Các giải của các bài toán này là sử dụng tổng các delta em nhé
Cho phương trình: ax2+bx+c=0 ( a và c khác 0) có nghiệm x1>0 và nghiệm còn lại âm.
Cmr: phương trình: cx2+bx+a=0 có nghiệm x2>0 và x1+x2+x1.x2 >= 3
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
Cho phương trình bậc hai: ax2+bx+c=0 có hai nghiệm x1,x2thỏa mãn ax1+bx2+c=0. Tính M=a2c+ac2+b3-3abc+2018
\(ax_1+bx_2+c=0\)
\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).
Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).
Thật vậy, ta có:
\(a^2c+ac^2+b^3-3abc=0\)
\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)
\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)
\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)
\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.
Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng.
Khi đó \(M=0+2018=2018\).
cho 3 phương trình
\(\hept{\begin{cases}x^2-ax+1=0\\x^2-bx+1=0\\x^2-cx+1=0\end{cases}}\)
thỏa mãn a+b+c =6 CMR trong 3 phương trình đã cho có ít nhất 1 phương trình có nghiệm phân biệt
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
Nếu xét các trường hợp khác thì sao alibaba ??
Ta có
\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)
\(\ge2\left(a+b+c\right)-15=12-15=-3\)
Chẳng nói lên được gì hết