Những câu hỏi liên quan
HL
Xem chi tiết
LH
31 tháng 10 2016 lúc 21:15

Nguyễn Anh Duy Giúp với coim hồi đó giúp ông rồi =))

Bình luận (0)
ND
31 tháng 10 2016 lúc 21:16

ok

Bình luận (7)
ND
31 tháng 10 2016 lúc 21:34

Tui nghĩ bài này thiếu dữ liệu :(

Bình luận (2)
HH
Xem chi tiết
ML
13 tháng 3 2021 lúc 13:52

Bài 2:

Thuật toán:

B1: Nhập a,b

B2: Kiểm tra nếu a=0 và b=0 thì phương trình có vô số nghiệm

B3: Kiểm tra nếu a=0 thì phương trình vô nghiệm

B4: Kiểm tra nếu a khác 0 thì có nghiệm x=-b/a;

Viết chương trình:

Program HOC24;

var a,b: integer;

x: real;

begin

write('Nhap a; b: '); readln(a,b);

if a=0 and b=0 then write('Phuong trinh co vo so nghiem');

if a=0 then write('Phuong trinh vo nghiem');

if a<>0 then write('x=',-b/a:1:2);

readln

end.

Bình luận (0)
ML
13 tháng 3 2021 lúc 13:53

Bài 1:

Thuật toán:

B1: Nhập a,b,c

B2: Tính \(\Delta\) = b2-4ac;

B3: Kiểm tra nếu  \(\Delta\) >0 phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}\text{ }}{2a}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

B4: Kiểm tra nếu \(\Delta\)<0 thì phương trình vô nghiệm

B5: Kiểm tra nếu \(\Delta\)=0 phương trình có 2 nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)

Viết chương trình:

Program HOC24;

var a,b,c: integer;

x1,x2: real;

denta: longint;

begin

write('Nhap a; b; c: '); readln(a,b,c);

denta:=b*b-4*a*c;

if denta>0 then 

begin

write('x1= ',(-b+sqrt(denta))/(2*a):1:2);

write('x2= ',(-b-sqrt(denta))/(2*a):1:2);

end;

if denta<0 then write('Phuong trinh vo nghiem');

if denta=0 then write('x= ',-b/2*a:1:2);

readln

end.

Bình luận (0)
YV
Xem chi tiết
NT
24 tháng 10 2021 lúc 0:32

Bài 3: 

#include <bits/stdc++.h>
using namespace std;
double a,b,c,delta,x1,x2;
int main()
{
    //freopen("PTB2.inp","r",stdin);
    //freopen("PTB2.out","w",stdout);
    cin>>a>>b>>c;
    delta=(b*b-4*a*c);
    if (delta<0) cout<<"-1";
    if (delta==0) cout<<fixed<<setprecision(5)<<(-b/(2*a));
    if (delta>0)
    {
        x1=(-b-sqrt(delta))/(2*a);
        x2=(-b+sqrt(delta))/(2*a);
        cout<<fixed<<setprecision(5)<<x1<<" "<<fixed<<setprecision(5)<<x2;
    }
    return 0;
}

 

Bình luận (1)
LS
Xem chi tiết
NC
24 tháng 4 2020 lúc 16:53

+) Ta có: P(x) = 0 có 3 nghiệm phân biệt 

=> Gọi 3 nghiệm đó là m; n ; p. 

=> P(x) = ( x - m ) ( x - p ) (x - n) 

=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )

Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm 

=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)

=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)

=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)

Bình luận (0)
 Khách vãng lai đã xóa
KF
Xem chi tiết
H24
2 tháng 6 2015 lúc 8:46

B1:nhập a,b,c 
B2: Tính đen ta = b^2-4ac 
B3: nếu a<0 thì phương trình vô nghiệm =>B6 
B4:nếu a=0 thì pt có nghiệm kép x=-b/2a => B6 
B5:nếu a>0 thì pt có 2 nghiệm phân biệt x1= (-b+căn đen ta)/2a ; x2= (-b-căn đen ta)/2a =>B6 
B6 :kết thúc, 
nếu muốn vẽ bằng sơ đồ khối thì xem tại: https://vubinh94.wordpress.com/tag/so-do-khoi-giai-phuong-trinh-bac-2-ax2bxc0/

Bình luận (0)
OO
Xem chi tiết
NT
17 tháng 11 2017 lúc 8:33

Các giải của các bài toán này là sử dụng tổng các delta em nhé

Bình luận (0)
NC
Xem chi tiết
IS
21 tháng 3 2020 lúc 21:57

Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có

\(ax_1^2+bx_1+c=0\)

chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)

ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)

suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)

Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)

áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :

\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
DH
10 tháng 6 2021 lúc 10:14

\(ax_1+bx_2+c=0\)

\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).

Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).

Thật vậy, ta có: 

\(a^2c+ac^2+b^3-3abc=0\)

\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)

\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)

\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)

\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.

Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng. 

Khi đó \(M=0+2018=2018\).

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
AN
31 tháng 3 2017 lúc 19:19

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

Bình luận (0)
HB
31 tháng 3 2017 lúc 22:15

Nếu xét các trường hợp khác thì sao alibaba ??

Bình luận (0)
AN
31 tháng 3 2017 lúc 23:16

Ta có

\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)

\(\ge2\left(a+b+c\right)-15=12-15=-3\)

Chẳng nói lên được gì hết

Bình luận (0)