chứng tỏ rằng nếu có 12 số tự nhiên bất kì thì luôn tìm được 2 số mà hiệu của nó chia hết cho 11
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Cho 110 số tự nhiên bất kì. Chứng tỏ rằng luôn tìm được 2 số có tổng hoặc hiệu chia hết cho 109
(Nguyên lí Đi-rích-lê: Khi cho n+1 con thỏ vào n cái chuồng thì luôn có ít nhất một chuồng có nhiều hơn 2 con)
Áp dụng nguyên lí Đi-rích-lê ta có:Khi lấy một số chia cho 109 thì có thể sẽ đc các số dư là:0,1,2,3...,107,108 (109 số dư)
Vậy khi lấy 110 số chia cho 109 sẽ có ít nhất 2 số có cùng số dư khi chia cho 109.
Suy ra hiêu của chúng chia hết cho 109 (đpcm)
Cho 10 số tự nhiên bất kỳ:
Chứng tỏ luôn tìm được 29 số tự nhiên mà hiệu của nó chia hết cho 9.
Cho 2016 số tự nhiên bất kỳ. Chứng tỏ luôn tìm được hai số mà hiệu của nó chia hết cho 2015.
Ta đã biết 1 số tự nhiên chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2015
Có 2015 loại số dư mà có 2016 số tự nhiên nên theo nguyên lí Đi - rích - lê sẽ có ít nhất 2 số cùng dư, hiệu của chúng chia hết cho 2015
=> đpcm
Ủng hộ mk nha ^_-
Chứng tỏ rằng với sáu số tự nhiên bất kì, luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5
Ta đã biết 1 số tự nhiên khi chia cho 5 chỉ có thể có 5 loại số dư là dư 0; 1; 2; 3; 4; 5. Có 6 số mà chỉ có 5 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 5
Chứng tỏ với 6 số tự nhiên bất kì, luôn có ít nhất 2 số tự nhiên mà hiệu của chúng chia hết cho 5
chứng tỏ rằng trong 6 số tự nhiên bất kì luôn tồn tại 2 số mà hiệu của chúng chia hết cho 5
Lấy 6 số chia cho 5 và xét phần dư của chúng.
Vì số dư phép chia cho 5 chỉ có thể là 0; 1; 2; 3; 4) nên trong 6 số dư thì chắc chắn có 2 số dư bằng nhau (Nguyên lý Direchle).
Khi đó lấy hai số tương ứng và hiệu của chúng sẽ chia hết cho 5 (vì hai số khi chia cho 5 có cùng số dư thì hiệu sẽ chia hết cho 5).
goi 5 stn do la a;a+1;a+2;a+3;a+4;a+5
a+5-a=5 chia het cho 5 ( thmdk)
Cho 100 số tự nhiên. Chứng minh rằng: luôn tìm được 15 số mà hiệu của 2 số bất kì trong 15 số đó chia hết cho 7
Bài toán 1. Chứng mình rằng:
a) Trong 2012 số tự nhiên bất kì luôn tìm được hai số chia cho 2011 có cùng số dư
(hay hiệu của chúng chia hết cho 2011).
b) Trong 2012 sô tự nhiên bất kì luôn tìm được một số chia hết cho 2012 hoặc luôn
tìm được hai số chia cho 2012 có cùng số dư.
Giúp mk vs, mk đang caand gấp
Chứng tỏ rằng từ 6 số tự nhiên bất kì luôn có thể tìm ra hai số mà hiệu của chúng chia hết cho 5.
Giúp mình giải cụ thể bài này nha