Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
NK
Xem chi tiết
AH
1 tháng 12 2018 lúc 11:50

Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)

\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)

\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)

\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)

\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)

Bình luận (0)
AH
1 tháng 12 2018 lúc 11:59

Câu 2:

Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)

\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)

Nếu $a+b+c+d\neq 0$

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)

\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)

Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)

\(\Rightarrow \frac{a+b}{c+d}=1\)

Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow M=1+1+1+1=4\)

Bình luận (0)
AH
1 tháng 12 2018 lúc 12:03

Câu 3:

\(25-y^2=8(x-2009)^2\) chẵn nên $y$ phải là số lẻ.

Mặt khác: \(25-y^2=8(x-2009)^2\geq 0, \forall x\in\mathbb{N}\)

\(\Rightarrow y^2\leq 25\). Với \(y\in\mathbb{N}; y\) lẻ suy ra:

\(y\in\left\{1;3;5\right\}\)

Nếu \(y=1\Rightarrow 8(x-2009)^2=25-1^2=24\Rightarrow (x-2009)^2=3\) (không t/m)

Nếu \(y=3\Rightarrow 8(x-2009)^2=25-3^2=16\)

\(\Rightarrow (x-2009)^2=2\) (không t/m)

Nếu $y=5$ thì \(8(x-2006)^2=25-5^2=0\Rightarrow x-2006=0\Rightarrow x=2006\) (t.m)

Vậy $(x,y)=(2006,5)$

Bình luận (0)
NA
Xem chi tiết
DH
6 tháng 4 2017 lúc 17:27

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)Thao vào A ta được :

\(A=\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}=1+1+1+1=4\)

Bình luận (0)
ND
Xem chi tiết
ND
11 tháng 1 2016 lúc 22:00

Giúp tôi với !!

 

Bình luận (0)
NB
Xem chi tiết
H24
Xem chi tiết
HN
28 tháng 11 2016 lúc 18:05

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)

(áp dụng tính chất dãy tỉ số bằng nhau)

Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)

\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)

Bình luận (0)
LH
Xem chi tiết
LT
Xem chi tiết
LT
29 tháng 9 2019 lúc 19:08

Mình cần gấp ạ 

Bình luận (0)
H24
29 tháng 9 2019 lúc 20:51

Đặt a/b=c/d=k

khi đó a=bk,c=dk

thay vào a+2c/b+2d ta có

                bk+2dk/b+2d

            =k(b+2d)/b+2d

            =k                          1

 thay vào a-3c/b-3d ta có

                bk-3dk/b-3d

              =k(b-3d)/b-3d

              =k                       2

             từ và 2 =>a+2c/b=2d=a-3c/b-3d

                    Các câu còn lại tương tự

Bình luận (0)
LT
Xem chi tiết
H24
29 tháng 9 2019 lúc 21:07

dễ  mà 

vì a/b=c/d (1)

=>a/b=c/d=a-c/b-d=(a-c)2016/(b-d)2016(*)

cũng từ (1) =>a/b=c/d=a2016/b2016=c2016/d2016=a2016+c2016/b2016+d2016 (**)

từ (*) và (**) => ............( bạn tự vt nha)

Bình luận (0)