Chứng minh rằng 2110-1 chia hết cho 200
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng 21 10 – 1 chia hết cho 200
* Áp dụng hằng đẳng thức:
Ta có:
Ta có:
gồm có 10 số hạng
có chữ số tận cùng bằng 0. Do đó, ta có thể viết:
Thay vào (*) ta được:
2110 - 1 = 20.10.A = 200A
Suy ra: 2110 - 1 chia hết cho 200.
Chứng minh rằng
a) 2110−1chia hết cho 200
b) 3930+3913chia hết cho 40
c) 260+530chia hết cho 41
link tham khảo
ccaau hỏi của ng duy mạnh
link : https://olm.vn/hoi-dap/detail/60197622644.html
hok tót
chứng minh \(2^{2^{2n+1}}\)+2110 chia hết cho 7
chứng minh rằng 21^10-1 chia hết cho 200
\(21^{10}-1\)
\(=\left(20+1\right)^{10}-1\)
\(=20^{10}+1^{10}-1\)
\(=20^{10}+\left(1-1\right)\)
\(=\left(20^2\right)^5\)
\(=400^5\)
\(=\left(200.2\right)^5\)
\(=200^5.2^5⋮200\left(đpcm\right)\)
21^10 -1
=(21^5)^2-1^2
=(21^5+1)(21^5-1)
Có 21^5+1=B suy rađặt 21^5+1=2k
suy ra 21^10=2k(21^5-1)=2k
Bài 6. Chứng minh rằng:
a) 9993 + 1 chia hết cho 1000.
b) 1993 − 199 chia hết cho 200.
:a) 9993 + 1
= 9993 + 13
=(999+1)(9992−999+1)
=1000.(9992−999+1)⋮1000
b) 1993 − 199
= 1993 + 1-200
=(199+1)(1992−199+1) -200
=200(1992−199+1) -200⋮200
Chứng minh rằng :
A= 1+2+3+...+1995 chia hết cho 1995
B= 2^9 + 2^99 chia hết cho 200
A= 1+2+3+...+1995
=1995+(1+1994)+(2+1993)+...+(996+999)+(997+998)
=1995+1995+1995+...+1995+1995
=1995x998\(⋮1995\)
chứng minh rằng: 199^3 - 199 chia hết cho 200
1993 - 199 = 199 ( 1992 - 1 ) = 199 ( 199 + 1 ) ( 199 - 1 ) = 199 . 198 . 200
=> 1993 - 199 chia hết cho 200
Chứng minh rằng: 201.202.203.....600 chia hết cho 3^200
chứng minh rằng 742^3-692^3 chia hết cho 200
Ta có:
\(742^3-692^3=\left(742-692\right)\left(742^2+742.692+692^2\right)=50.\left(742^2+742.692+692^2\right)\)
Do \(742⋮2\Rightarrow742^2⋮4\)
\(\left\{{}\begin{matrix}742⋮2\\692⋮2\end{matrix}\right.\) \(\Rightarrow742.692⋮4\)
\(692⋮2\Rightarrow692^2⋮4\)
\(\Rightarrow\left(742^2+742.692+692^2\right)⋮4\)
\(\Rightarrow\left(742^3-692^3\right)⋮\left(50.4=200\right)\) (đpcm)