Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?
Trả lời các câu hỏi sau:
a) Nếu tung một đồng xu 22 lần liên tiếp, có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N là bao nhiêu?
b) Nếu tung một đồng xu 25 lần liên tiếp, có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S là bao nhiêu?
c) Nếu tung một đồng xu 30 lần liên tiếp, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S là bao nhiêu?
a, Xác suất thực nghiệm xuất hiện mặt N là:\(\frac{13}{22}\)
b,Xác suất thực nghiệm xuất hiện mặt S là:\(\frac{11}{25}\)
c,Số lần xuất hiện mặt S là: 30 - 14 = 16
,Xác suất thực nghiệm xuất hiện mặt S là:\(\frac{16}{30}\)
nếu tung đồng xu 22 lần liên tiếp,có 13 lần xuất hiện mặt s thì xác suất thực nghiệm xuất hiện mặt n là bao nhiêu?
Tung một đồng xu 5 lần liên tiếp, ta có kết quả như sau:
Hãy cho biết số lần xuất hiện mặt N và số lần xuất hiện mặt S sau 5 lần tung đồng xu.
Sau 5 lần tung đồng xu:
- Số lần xuất hiện mặt N là 3 lần
- Số lần xuất hiện mặt S là 2 lần
Xét phép thử “Tung một đồng xu hai lần liên tiếp”. Tính xác suất của biến cố A: “Mặt xuất hiện của đồng xu ở cả hai lần tung là giống nhau”.
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Câu 1: Nếu tung một đồng xu 13 lần liên tiếp, có 4 lần xuất hiện mặt thì xác suất thực nghiệm xuất hiện mặt bằng:
A. . B. . C. . D. .
Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Kết quả của hai lần tung là khác nhau”.
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Kết quả của hai lần tung là khác nhau”.
Các kết quả thuận lợi cho biến cố A là: \(SN;{\rm{ }}NS\)tức là \(A = \left\{ {SN;NS} \right\}\).Vậy \(n\left( A \right) = 2\)
+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
: Nếu tung một lúc 2 đồng xu 5 lần liên tiếp có 1 lần xuất hiện mặt SS; 1 lần xuất
hiện mặt NN; 2 lần xuất hiện mặt SN.
a. Các kết quả có thể xảy ra khi gieo 2 đồng xu 5 lần? b. Tính xác suất thực nghiệm xuất hiện mặt SS?
c. Tính xác suất thực nghiệm xuất hiện mặt NN? d. Tính xác suất thực nghiệm xuất hiện mặt SN? e. Tính xác suất thực nghiệm xuất hiện mặt NS?
nếu tung 1 đồng xu 40 lần liên tiếp,có 16 lần xuất hiện mặt S thì sác xuất thực nghiệm xuất hiện mặt N là
nếu tung đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N là bao nhiêu?
A.\(\dfrac{7}{11}\)
B.\(\dfrac{4}{11}\)
C.\(\dfrac{4}{7}\)
D.\(\dfrac{3}{7}\)
có ai ko cíu tui bài này với