CMR nếu a/b=c/d thì (a^2+b^2)/(b^2+d^2)=a/d
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
cho a,b,c khác 0 và a^2=b.c
CMR:a^2+c^2/b^2+d^2=c/b
CMR: nếu a/b=c/d thì a^2+b^2=b^2+d^2=a/d
CMR nếu : a/b = b/c = c/d thì a+b/c+d = b^2 + c^2
Cmr nếu a/b=c/d thì
a. a+b/a-b=c+d/c-d
b. (a+b)^2/(a-b)^2=(c+d)^2/(c-d)^2
c. 2a+5b/3a-4b=2c+5d/3c-4d
a, CMR : nếu a/b = b/d thì (a^2+b^2)/(b^2+d^2) = a/d
b, cho (a+b)/(a-b) = (c+d )/(c-d)
CMR : a/b = c/d
a,
\(\dfrac{a}{b}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{bd}\\ \Rightarrow\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d} \)
cmr nếu a+c=2b và 2*b*d=c*(b+d) thì a/b=c/d với b,d khác 0
Ta có:2bd=c(b+d)
=>2bd=bc+cd
Mà a+c=2b (theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc (cùng bớt đi cd)
=>a/b=c/d (đpcm)
cho 2 ps a/b và c/d (b,d > 0). CMR nếu a/b < c/d thì a/b<a+c/b+d<c/d
cmr : Nếu a + b = c + d và a^2 + b^2 = c^2 + d^2
Thì a^2014 + b^2014 = c^2014 + d^2014
cmr nếu \(\frac{a}{b}=\frac{c}{d}\)
thì: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(b+d khác 0)
\(\frac{a}{b}=\frac{c}{d}=\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(T/c dãy tỷ số = nhau)(1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\left(\frac{a+c}{b+d}\right)^2\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)
Từ )1) và (2) =>\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)