Phân tích đa thức thành nhân tử:
\(x^4+2x^3+5x^2+4x+12\)
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Phân tích các đa thức sau thành nhân tử: x^4+2x^3+5x^2+4x-12
Có thể chi tiết ra ko bạn, mình cảm ơn.
\(x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4+2x^3+x^2\right)+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)+2\left(x^2+x-2\right)\)
\(=\left(x^2+x+2\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2x-2\right)\)
\(=\left(x^2+x+2\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+2\right)\)
phân tích đa thức thành nhân tử bằng phương pháp đặt biến phụ: x^4 + 2x^3 +5x^2 + 4x - 12
Phân tích đa thức thành nhân tử:
\(x^4+2x^3+5x^2+4x+12\)
x4 + 2x3 + 5x2 + 4x -12=0
<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0
<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2
Phân tích đa thức thành nhân tử a) x^4 + 2x^3 - 4x - 4 b) x^3 - 4x^2 + 12x - 27 c) xy -4y - 5x + 20
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
Phân tích đa thức thành nhân tử
A= 6x^4-5x^3+4x^2+2x-1
B=4x^4+4x^3+5x^2+8x-6
C=x^4+x^3-5x^2+x-6
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
Phân tích đa thức thành nhân tử
1)4x^2+2x-36x-9y+81y^2
2)x^4-5x^2+4
2) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Phân tích các đa thức sau thành nhân tử
1) x^3+2x-3
2) x^3-6x+4
3) x^3-2x^2+1
4)x^3+5x^2-12
5) x^3-6x+9x
6) 4x^3-9x^2+5x
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
5) \(x^3-6x^2+9x\) (chắc đề như vậy)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
6) \(4x^3-9x^2+5x\)
\(=x\left(4x^2-9x+5\right)\)
\(=x\left[\left(4x^2-4x\right)-\left(5x-5\right)\right]\)
\(=x\left[4x\left(x-1\right)-5\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(4x-5\right)\)
Phân tích đa thức thành nhân tử
\(x^4+4x^3+5x^2+2x+1\)
Bài này giải bằng phương pháp hệ số bất định