tính nhanh \(S=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
tính nhanh \(S=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
`S = 1/2 + 1/4 + ....+1/1024`
`=> 1/2S = 1/4 + 1/8 + .....+1/2048`
`=> 1/2S = 1-1/2S = ( 1/4 + 1/8 + .... + 1/2048 )-(1/2+1/4+.....+1/1024)`
`=> 1/2S = 1 - 1/2048`
`=> 1/2S = 2047/2048`
`=> S = 2047/1024`
`S = 2047/1024`
Cách làm `:` Bấm mày tính `bb!`
tính nhanh \(S=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
Nhân 2 vế ta được:
2S=1+1/2 + 1/4 + ... + 1/512
S=2S−S=1 - 1/1024 =1023/1024
Vậy: S= 1023/1024
tính nhanh \(\dfrac{1}{2}\) +\(\dfrac{1}{4}\) +\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\) +.....+\(\dfrac{1}{512}\) +\(\dfrac{1}{1024}\)
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
S=\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)+\(\dfrac{1}{256}\)+\(\dfrac{1}{512}\)+\(\dfrac{1}{1024}\)
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
Tính nhanh :
F=\(\dfrac{2}{6}\)+\(\dfrac{2}{12}+...+\dfrac{2}{240}\)
G= \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
H= \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
Giải:
a) \(F=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{240}\)
\(\Leftrightarrow F=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{15.16}\)
\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{15}-\dfrac{1}{16}\)
\(\Leftrightarrow F=\dfrac{1}{2}-\dfrac{1}{16}\)
\(\Leftrightarrow F=\dfrac{7}{16}\)
Vậy ...
b) \(G=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(\Leftrightarrow G=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}\)
\(\Leftrightarrow\dfrac{1}{3}G=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}+\dfrac{1}{3^6}\)
\(\Leftrightarrow\dfrac{2}{3}G=\dfrac{1}{3}-\dfrac{1}{3^6}\)
\(\Leftrightarrow G=\dfrac{\dfrac{1}{3}-\dfrac{1}{3^6}}{\dfrac{2}{3}}\)
\(\Leftrightarrow G=\dfrac{\left(\dfrac{1}{3}-\dfrac{1}{3^6}\right)3}{2}\)
\(\Leftrightarrow G=\dfrac{1-\dfrac{1}{3^5}}{2}\)
\(\Leftrightarrow G=\dfrac{\dfrac{3^5-1}{3^5}}{2}\)
\(\Leftrightarrow G=\dfrac{3^5-1}{3^5.2}\)
Vậy ...
c) Tương tự b)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
S=1/2+1/4+1/8+...+1/1024=(1/2)^1+(1/2)^2+(1/2)^3+...+(1/2)^10
2S=1+(1/2)^1+(1/2)^2+...+(1/2)^9
2S-S=1-(1/2)^10
vậy S=1-(1/2)^10
A=\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+....+\(\dfrac{1}{512}\)+\(\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp