\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{512}\)
\(S=2S-S=1-\dfrac{1}{1024}=\dfrac{1023}{1024}\)
\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{512}\)
\(S=2S-S=1-\dfrac{1}{1024}=\dfrac{1023}{1024}\)
tính nhanh \(S=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
tính nhanh \(S=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
tính tổng S = \(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\dfrac{4}{16}+...+\dfrac{10}{2^{10}}\)
làm nhanh hộ mình với
Câu 2 : Tính nhanh:
\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+...+\(\dfrac{1}{256}\)+\(\dfrac{1}{512}\)
tính nhanh :
\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)
\(\dfrac{4}{45}+\dfrac{-1}{45}+\dfrac{7}{45}+\dfrac{4}{45}+\dfrac{-2}{45}+\dfrac{-1}{5}\)
Thực hiện phép tính.(tính nhanh nếu có thể)
1/ \(2\dfrac{1}{3}.3\)
2/ \(\left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}\)
3/ \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}\)