Những câu hỏi liên quan
PH
Xem chi tiết
KL
Xem chi tiết
KN
9 tháng 9 2020 lúc 10:11

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 6 2017 lúc 17:11

Đặt n-2= a^3; n-5=b^3  (a,b thuộc Z)

Ta có

\(a^3-b^3=\left(n-2\right)-\left(n-5\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=3\)

Ta thấy \(a^2+ab+b^2\ge0\)nên

TA CÓ BẢNG :

     a-ba2+ab+b2         a     b     
          1               3              
           3                1   
                           
                            
Bình luận (0)
AD
Xem chi tiết
TC
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Bình luận (0)
H24
Xem chi tiết
DL
Xem chi tiết
HT
Xem chi tiết