LA

tìm số nguyên dương n thỏa mãn n-5,n+2 đều là lập phương của một số nguyên

LP
11 tháng 5 2022 lúc 5:57

Đặt \(\left\{{}\begin{matrix}n-5=a^3\left(1\right)\\n+2=b^3\left(2\right)\end{matrix}\right.\) \(\left(a,b\inℤ;a< b\right)\)

\(\left(1\right)\Leftrightarrow n=a^3+5\)

Thay vào (2), ta có \(a^3+5+2=b^3\Leftrightarrow b^3-a^3=7\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)=7\)

Vì \(a< b\Leftrightarrow b-a>0\), mà \(\left(b-a\right)\left(a^2+ab+b^2\right)=7>0\)\(\Rightarrow a^2+ab+b^2>0\)

Ta chỉ xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}b-a=1\\a^2+ab+b^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^2+a\left(a+1\right)+\left(a+1\right)^2=7\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+a+a^2+2a+1=7\)\(\Leftrightarrow3a^2+3a-6=0\)\(\Leftrightarrow a^2+a-2=0\)\(\Leftrightarrow a^2-a+2a-2=0\)\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)=0\)\(\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-2\end{matrix}\right.\) (nhận)

Với \(a=1\) thì \(b=a+1=1+1=2\) (nhận)  từ đó \(n-5=a^3=1^3=1\Rightarrow n=6\)

Thử lại: \(n+2=6+2=8=2^3=b^3\) (nhận)

TH2: \(\left\{{}\begin{matrix}b-a=7\\a^2+ab+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+7\\a^2+a\left(a+7\right)+\left(a+7\right)^2=1\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+7a+a^2+14a+49=1\)\(\Leftrightarrow3a^2+21a+48=0\)\(\Leftrightarrow a^2+7a+16=0\)\(\Leftrightarrow4a^2+28a+64=0\)\(\Leftrightarrow\left[\left(2a\right)^2+2.2a.7+7^2\right]+15=0\)\(\Leftrightarrow\left(2a+7\right)^2+15=0\)\(\Leftrightarrow\left(2a+7\right)^2=-15\) (vô lí)

Vậy ta loại TH2

Do đó để \(n-5\) và \(n+2\) đều là lập phương của 1 số nguyên thì \(n=6\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
ND
Xem chi tiết
QH
Xem chi tiết
MN
Xem chi tiết
NL
Xem chi tiết
NQ
Xem chi tiết
TT
Xem chi tiết
DL
Xem chi tiết
TL
Xem chi tiết