B=\(\frac{5}{\sqrt{x}-1}\). Tìm x thuộc Z để B có GT nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bai 1
A= \(\frac{\sqrt{x}-3}{2}\) . tìm x thuộc Z và x<30 để A có giá trị nguyên
bài 2
B = \(\frac{5}{\sqrt{x}-1}\)tìm x thuộc Z để B có gía trị nguyên
Cho b =\(\frac{5}{\sqrt{x-1}}\)
tìm x thuộc Z để b nhận gt nguyên
Vì x thuộc Z nên x-1 thuộc Z
Để b thuộc Z thì \(\sqrt{x-1}\) phải thuộc Z và thuộc Ư(5)
Vì \(\sqrt{x-1}\ge0\) nên \(\sqrt{x-1}\in\){1;5}
<=>x-1\(\in\){1;25}
<=>x\(\in\){2;26}
a, Với x >= 0 ; x khác 4
\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)
b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)
\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)
c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\sqrt{x}-2\) | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
x | 1 | 9 | 0 | 16 | loại | 36 | loại | 100 |
cho B= \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a,xác định x để B có nghĩa
b,rút gọn B
c,tìm x để B>1
d,tìm x để B thuộc Z
Cho B = \(\frac{5}{\sqrt{x}-1}\). Tìm x thuộc Z để B có giá trị nguyên
\(B=\frac{5}{\sqrt{x}-1}\)
Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;-5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
Vậy x={0;4;16}
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-6\sqrt{5}+5}{2x+7\sqrt{x}-4}\)
a) Tìm TXĐ của A
b) Rút gọn A
c) Tìm x để A >\(\frac{1}{2}\)
d) Tìm x thuộc Z để A thuộc Z
đè hinh như là 6\(\sqrt{x}\) nhi bạn
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x thuộc Z để Q thuộc Z
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Cho \(A=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{1-\frac{2}{x}+\frac{1}{x^2}}}\)
a) Rút gọn A
b) Tìm x thuộc Z , x>2 để A nguyên