Những câu hỏi liên quan
AL
Xem chi tiết
NN
Xem chi tiết
CD
Xem chi tiết
LC
13 tháng 6 2017 lúc 16:49

\(\frac{1}{\sqrt{xy}}\)<=  {\(\frac{1}{x}\)+\(\frac{1}{y}\)}  : 2 

Tương tư.....

=> DPCM

Bình luận (0)
GN
Xem chi tiết
NT
Xem chi tiết
Xem chi tiết
KL
Xem chi tiết
AN
1 tháng 2 2017 lúc 6:36

2/ x2 - 6x + 4 + \(2\sqrt{2x-1}\)= 0

<=> (x2 - 4x + 4) - (2x - 1 - \(2\sqrt{2x-1}\)+1) = 0

<=> (x - 2)2 - (1 - \(\sqrt{2x-1}\))2 = 0

\(\Leftrightarrow\left(x-1-\sqrt{2x-1}\right)\left(x-3+\sqrt{2x-1}\right)=0\)

Làm tiếp nhé

Bình luận (0)
KL
2 tháng 2 2017 lúc 0:11

câu mik muốn hỏi là câu 1 bn giúp mik

Bình luận (0)
AN
3 tháng 2 2017 lúc 21:46

Câu 1/ 

\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)-\frac{1}{2}}{2}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)}{2}+\frac{1}{4}\)

\(\le\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{\sqrt{x}+\sqrt{y}}{2}+\frac{1}{4}=\frac{1}{4}\)

Bình luận (0)
HG
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết