Biến đổi đa thức thành nhân tử \(\left(x-8\right)^2\)+ \(36\)
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
Phân tích đa thức thành nhân tử bằng phương pháp đổi biến
\(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
Đặt \(x^2-2x=a\)
\(\Rightarrow a\left(a-1\right)-6=a^2-a-6=\left(a^2+2a\right)+\left(-3a-6\right)=\left(a+2\right)\left(a-3\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
phân tích đa thưc thành nhân tử (phương pháp đổi biến)
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
Phân tích đa thức thành nhân tử
\(x^3-\left(a+5\right)x^2-2\left(a-3\right)\left(a-1\right)x+4a^2-24a+36\)
=\(\left(x+a-3\right)\left(x^2-2ax-2x+4a-12\right)\)
Phân tích đa thức thành nhân tử:
\(x^3-8+2x\left(x-2\right)\)
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
phân thức đa thức thành nhân tử bằng cách đặt biến phụ
a) \(A=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
b) \(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
GIÚP MK VS MN!!!! MAI ĐI HC RỒI
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
a) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
b) \(\left(x^2-8\right)^2+36\)
c) \(81x^4+4\)
b)\(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-36x^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
c)81x4+4
=81x4+36x2+4-36x2
=(9x2+2)2-(6x)2
=(9x2+6x+2)(9x2-6x+2)
a)\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
\(=\left(x^2+2x-1\right)^2\)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)