Những câu hỏi liên quan
NH
Xem chi tiết
HT
Xem chi tiết
ND
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
PN
Xem chi tiết
TH
Xem chi tiết
TD
4 tháng 2 2017 lúc 10:09

Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.

Bình luận (0)
NT
29 tháng 5 2018 lúc 18:45

Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p

\(\Rightarrow\)Chắc chắn r là số lẻ.

\(\Rightarrow\)p hoặc q là số chẵn.

Giả sử p chẵn \(\Rightarrow\)p = 2.

Ta có:\(16+q^4=r^4\)

\(\Leftrightarrow r^4-q^4=16\)

\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)

\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)

Ta lại có: \(r^2-q^2< r^2+q^2\) 

\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)

Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.

Bình luận (0)
MC
Xem chi tiết
TL
3 tháng 3 2020 lúc 19:59

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

Bình luận (0)
 Khách vãng lai đã xóa