\(9\times9\)
\(8\times8\)
\(9\times9\times9\times9\times9\times9\times9=\)
Viết dưới dạng lũy thừa
8 x 8 = 82
9 x 9 x 9 x 9 x 9 x 9 x 9 = 97
\(8x8=8^2=64\)
\(9x9x9x9x9x9x9=9^7=4782969\)
\(8.8=8 ^2=64\)
\(9.9.9.9.9.9.9=9^7=4782969\)
\(9\times9=?\)
\(E=\dfrac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^{10}\times6^{19}-7\times2^{29}\times27^6}\)
\(\dfrac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^{10}\times6^{19}-7\times2^{29}\times27^6}\\ =\dfrac{5\times2^{30}\times3^{18}-2^2\times3^{20}\times2^{27}}{5\times2^{10}\times3^{19}\times2^{19}-7\times2^{29}\times3^{18}}\\ =\dfrac{5\times2^{30}\times3^{18}-2^{29}\times3^{20}}{5\times2^{29}\times3^{19}-7\times2^{29}\times3^{18}}\\ =\dfrac{2^{29}\times3^{18}\times\left(5\times2-3^2\right)}{2^{29}\times3^{18}\times\left(5\times3-7\right)}\\ =\dfrac{10-9}{15-7}\\ =\dfrac{1}{8}\)
Tính.
a) \(\dfrac{5\times6\times12}{6\times12\times7}\) b) \(\dfrac{9\times8\times15}{15\times9\times16}\)
a) \(\dfrac{5\times6\times12}{6\times12\times7}=\dfrac{5}{7}\)
b) \(\dfrac{9\times8\times15}{15\times9\times16}=\dfrac{1}{2}\)
\(\frac{2^{19}\times27^3+15\times4^9\times9^4}{6^9\times2^{10}+12^{10}}\)
= 2^19 x (3^3)^3 + 3 x 5 x (2^2)^9 x (3^2)^4 / 2^9 x 3^9 x 2^10 + (2^2)^10 x 3^10
= 2^19 x 3^9 + 3^9 x 2^18 x 5 / 2^19 x 3^9+2^20 x 3^10
= 3^9 x 2^18 x (2+5) / 3^9 x 2^19 x (1 + 2 x 3)
= 3^9 x 2^18 x 7 / 3^9 x 2^19 x 7 = 1/2
k mk nha
\(99+43\times9\times9\times9=\)
đây bài giai nè chưa chăc dung đâu
99+43*9*9*9=
=99+43*9*9*9*1
=9*(99+43+1)
tiếp đó tự làm
99 + 43 * 9 * 9 * 9 = 31446
\(x+78\times9=9\times45\)
kb voi mk nha
\(x+78\cdot9=9\cdot45\)
\(\Leftrightarrow x+702=405\)
\(\Leftrightarrow x=-297\)
x + 78 x 9 = 9 x 45
x + 78 x 9 = 405
x + 702 = 405
x = 405 - 702
x= -297
\(\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
giúp nhé tính
A=\(\dfrac{2^{19}\times27^3-15\times\left(-4\right)^9\times9^4}{6^9\times2^{10}+\left(-12\right)^{10}}\)
\(A=\dfrac{2^{19}\cdot3^9-3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot2^{10}\cdot3^9+2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{19}\cdot3^9-2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{18}\cdot3^9\left(2-5\right)}{2^{19}\cdot3^9\cdot7}=\dfrac{1}{2}\cdot\dfrac{-3}{7}=\dfrac{-3}{14}\)