Những câu hỏi liên quan
Xem chi tiết

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 17:57

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 18:06

2. \(A=\left(x-2\right)^2+|y+3|+7\)

Ta có :

\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)

\(\Rightarrow A\ge7\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
VT
8 tháng 5 2022 lúc 20:47

có:

(x-2)≥ 0 ∀ x

(y-x+1)2 ≥ 0 ∀ x,y

⇒ (x-2)2+(y-x+1) ≥ 0 ∀ x,y

Dấu "=" xày ra

⇔(x-2)2+(y-x+1)2=0

⇔(x-2)2=0                                

⇔x - 2 = 0

⇔x=2

Có: x=2

⇒(y-x+1)2=0

⇔ (y-[2-1])2 =0

⇔ (y-1)2=0

⇔y=1

vậy số nguyên x=2;y=1(đpcm)

Bình luận (0)
MH
8 tháng 5 2022 lúc 21:41

Vì: 

\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y-x+1\right)^2\ge0\forall x,y\end{matrix}\right.\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bình luận (0)
DN
8 tháng 5 2022 lúc 21:16

\(\left(x-2\right)^2+\left(y-x+1\right)^2=0\)

Ta có:

\(\left(x-2\right)^2\) ,\(\left(y-x+1\right)^2\) hoặc \(\left(x-2\right)^2+\left(y-x+1\right)^2\)\(=0\)

Nếu: \(\left(x-2\right)^2=0\), thì:

\(\left(x-2\right)^2=0\)

\(\left(x-2\right)=\sqrt{0}\)

\(\left(x-2\right)=0\)

\(x=0+2\)

\(x=2\)

Nếu \(\left(y-x+1\right)^2=0\), thì:

\(\left(y-x+1\right)^2=0\)

\(\left(y-x+1\right)=\sqrt{0}\)

\(\left(y-x+1\right)=0\)

\(\Rightarrow\left(y-2+1\right)=0\)

\(y-2=0-1\)

\(y-2=\left(-1\right)\)

\(y=\left(-1\right)+2\)

\(y=1\)

Vậy:

 \(x=2\)

\(y=1\)

 

Bình luận (0)
LH
Xem chi tiết
H24
26 tháng 5 2016 lúc 14:51

xlaapj bảng xét dấy 

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
NH
1 tháng 6 2024 lúc 21:37

Có sai không bạn

Bình luận (0)
DD
Xem chi tiết
DH
8 tháng 4 2017 lúc 19:50

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Mà đề lại cho \(\left(x-2\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Vậy \(x=2;y=-1\)

Bình luận (0)
NN
Xem chi tiết
NT
4 tháng 2 2021 lúc 17:14

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

Bình luận (1)
VH
Xem chi tiết
NT
8 tháng 2 2021 lúc 13:36

Bài 1:a) Ta có: \(1-3x⋮x-2\)

\(\Leftrightarrow-3x+1⋮x-2\)

\(\Leftrightarrow-3x+6-5⋮x-2\)

mà \(-3x+6⋮x-2\)

nên \(-5⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-5\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{3;1;7;-3\right\}\)

Vậy: \(x\in\left\{3;1;7;-3\right\}\)

b) Ta có: \(3x+2⋮2x+1\)

\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)

\(\Leftrightarrow6x+4⋮2x+1\)

\(\Leftrightarrow6x+3+1⋮2x+1\)

mà \(6x+3⋮2x+1\)

nên \(1⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(1\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

Vậy: \(x\in\left\{0;-1\right\}\)

Bình luận (1)
NL
8 tháng 2 2021 lúc 13:39

Bài 1 :

a, Có : \(1-3x⋮x-2\)

\(\Rightarrow-3x+6-5⋮x-2\)

\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)

- Thấy -3 ( x - 2 ) chia hết cho  x - 2

\(\Rightarrow-5⋮x-2\)

- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy ...

b, Có : \(3x+2⋮2x+1\)

\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)

\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)

- Thấy 1,5 ( 2x +1 ) chia hết cho  2x+1

\(\Rightarrow1⋮2x+1\)

- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x\in\left\{0;-1\right\}\)

Vậy ...

Bình luận (1)
NT
Xem chi tiết
TT
2 tháng 1 2015 lúc 13:22

a) Tích của 2 thừa số bằng 0

=> x - 2 = 0      hoặc    x + 1 = 0

=> x = 2     hoặc    x = -1

Bình luận (0)