tìm x:
\(\dfrac{x+1}{3}\)= \(\dfrac{-3}{-9}\)
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) (với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x nguyên để A nguyên
a, \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b, \(A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow\sqrt{x}+3\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
\(a,A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
\(b,A\in Z\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}\in Z\Leftrightarrow-3⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-4;-2;0\right\}\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x\in\left\{0\right\}\)
Vậy \(x=0\) thì A nguyên
Cho biểu thức:
\(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
a,rút gọn B
b, tính giá trị của biểu thức B tại x thoả mãn: |2x+1|=5
c, tìm x để \(B=\dfrac{-3}{5}\)
d, tìm x để B<0
a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)
\(=\dfrac{3}{x-3}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(loại) hoặc x=2(nhận)
Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)
c: Để B=-3/5 thì x-3=-5
=>x=-2(loại)
d: Để B<0 thì x-3<0
=>x<3
I : Cho biểu thức A=(\(\dfrac{x+1}{x-1}-\dfrac{x^2+2x-9}{x^2-1}\) ):\(\dfrac{5}{x+1}\)
1) Rút gọn biểu thức A
2) Tìm giá trị của A khi x=\(1\dfrac{1}{3}\)
3) Tìm giá trị của x để A=-1
help me
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
1: \(A=\dfrac{x^2+2x+1-x^2-2x+9}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{5}=\dfrac{2}{x-1}\)
2: Khi x=4/3thì \(A=2:\left(\dfrac{4}{3}-1\right)=2:\dfrac{1}{3}=6\)
3: Để A=-1 thì 2/x-1=-1
=>x-1=-2
=>x=-1(loại)
Tìm x
a,x\(^3\)-4x\(^2\)=-4x
b, \(\dfrac{x-1}{3}=\dfrac{x}{4}+\dfrac{2x-3}{2}\)
\(a,\Leftrightarrow x^3-4x^2+4x=0\\ \Leftrightarrow x\left(x^2-4x+4\right)=0\\ \Leftrightarrow x\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ b,\Leftrightarrow4\left(x-1\right)=3x+6\left(2x-3\right)\\ \Leftrightarrow4x-4=3x+12x-18\\ \Leftrightarrow11x=14\Leftrightarrow x=\dfrac{14}{11}\)
a/ \(x^3-4x^2=-4x\)
\(\Leftrightarrow x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b/ \(\dfrac{x-1}{3}=\dfrac{x}{4}+\dfrac{2x-3}{2}\)
\(\Leftrightarrow8\left(x-1\right)=6x+12\left(2x-3\right)\)
\(\Leftrightarrow8x-8=6x+24x-36\)
\(\Leftrightarrow8x-8=30x-36\)
\(\Leftrightarrow8x-30x=8-36\)
\(\Leftrightarrow-22x=-28\)
\(\Leftrightarrow x=\dfrac{14}{11}\)
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) \(-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) \(-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0,x\ne4,x\ne9\right)\)
a\()\) Rút gọn biểu thức trên
b\()\) Tìm giá trị nguyên của x để M nhận giá trị nguyên
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
Tìm x
a, 3x\(^2\)-2x-1=0
b, \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
a. 3x2 - 2x - 1 = 0
<=> 3x2 - 3x + x - 1 = 0
<=> 3x(x - 1) + (x - 1) = 0
<=> (3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
b. \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
<=> \(\dfrac{20\left(x+1\right)}{60}+\dfrac{12\left(2x+3\right)}{60}=\dfrac{45}{60}\)
<=> 20x + 20 + 24x + 36 = 45
<=> 44x = -11
<=> x = \(-\dfrac{1}{4}\)
a) \(3x^2-2x-1=0\) \(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Pt\(\Rightarrow\)\(5\cdot4\left(x+1\right)+3\cdot4\cdot\left(2x+3\right)=3\cdot3\cdot5\)
\(\Leftrightarrow44x=-11\Rightarrow x=-\dfrac{1}{4}\)
Cho x; y > 0 và xy = 3. Tìm GTNN của \(K=\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)
Áp dụng BĐT cô si cho:
!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)
!!) Tương tự ta có:
\(3x+y\ge2\sqrt{3xy}\ge6\)
Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)
Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3
\(\dfrac{2x-1}{x+3}\)=\(\dfrac{-3}{4}\)
hãy tìm x
\(\Leftrightarrow-3\left(x+3\right)=4\left(2x-1\right)\left(x\ne-3\right)\\ \Leftrightarrow-3x-9=8x-4\\ \Leftrightarrow11x=-5\Leftrightarrow x=-\dfrac{5}{11}\left(tm\right)\)
\(\Leftrightarrow8x-4+3x+9=0\)
=>11x=-5
hay x=-5/11