Những câu hỏi liên quan
H24
Xem chi tiết
LL
3 tháng 3 2019 lúc 20:59

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk,c=dk\)

Thay a = bk, c = dk vào \(\frac{7a^2+3ab}{2a^2-ab}\)và \(\frac{7c^2+3cd}{2c^2-cd}\), ta có:

\(\frac{7a^2+3ab}{2a^2-ab}=\frac{7\left(bk\right)^2+3.bk.b}{2\left(bk\right)^2-bk.b}=\frac{7b^2k^2+3b^2k}{2b^2k^2-b^2k}=\frac{b^2k\left(7k+3\right)}{b^2k\left(2k-1\right)}=\frac{7k+3}{2k-1}\)

\(\frac{7c^2+3cd}{2c^2-cd}=\frac{7\left(dk\right)^2+3.dk.d}{2\left(dk\right)^2-dk.d}=\frac{7d^2k^2+3d^2k}{2d^2k^2-d^2k}=\frac{d^2k\left(7k+3\right)}{d^2k\left(2k-1\right)}=\frac{7k+3}{2k-1}\)

\(\Rightarrow\frac{7a^2+3ab}{2a^2-ab}=\frac{7c^2+3cd}{2c^2-cd}\left(đpcm\right)\)

Bình luận (0)
TN
3 tháng 3 2019 lúc 21:11

Đặt a/b=c/d=k thì a=bk, c=dk

*7a+3ab/2a2-ab=7b2k2+3b2k/2b2k2-b2k=b2k(7k+3)/b2k(2k-1)=7k+3/2k-1  (1)

Tương tự 7c2+3cd/2c2-cd=7k+3/2k-1  (2)

từ (1) và (2) suy ra :

7a2+3ab2a2ab =7c2+3cd2c2cd 

Bình luận (0)
NL
Xem chi tiết
KK
13 tháng 1 2019 lúc 7:25

Ta có : \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)=> \(\hept{\begin{cases}a=ck\\d=dk\end{cases}}\)

Khi đó, ta có : \(\frac{2\left(ck\right)^2-3\left(ck\right)\left(dk\right)+5\left(dk\right)^2}{2\left(dk\right)^2+3\left(ck\right)\left(dk\right)}=\frac{2c^2k^2-3cdk^2+5d^2k^2}{2d^2k^2+3cdk^2}=\frac{\left(2c^2-3cd+5d^2\right)k^2}{\left(2d^2+3cd\right)k^2}\)

                   = \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)(Đpcm)

Bình luận (0)
DH
Xem chi tiết
DN
25 tháng 3 2020 lúc 13:55

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

Bình luận (0)
 Khách vãng lai đã xóa
ML
Xem chi tiết
NB
Xem chi tiết
NN
30 tháng 4 2017 lúc 17:17

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay a và c vào VP và VT sẽ bằng nhau

Bình luận (0)
NB
20 tháng 9 2017 lúc 20:19

Đại số lớp 7Ai help me vshihi

Bình luận (0)
H24
Xem chi tiết
MP
8 tháng 4 2017 lúc 21:51

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2\left(bk\right)^2-2bkb+5b^2}{2b^2+3bkb}=\dfrac{2b^2k^2-2b^2k+5b^2}{2b^2+3b^2k}=\dfrac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(1\right)\)

\(\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}=\dfrac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\dfrac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\dfrac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\)

Bình luận (0)
NT
8 tháng 4 2017 lúc 21:40

Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2b^2k^2-3b^2k+5d^2}{2b^2+3b^2k}\)

\(=\dfrac{b^2k\left(2k-3k+5\right)}{b^2\left(2+3k\right)}=\dfrac{k\left(2k-3+5\right)}{2+3k}\) (1)

\(\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}=\dfrac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

\(=\dfrac{d^2k\left(2k-3+5\right)}{d^2\left(2+3k\right)}=\dfrac{k\left(2k-3+5\right)}{2+3k}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\left(đpcm\right)\)

Bình luận (4)
TH
Xem chi tiết
TL
Xem chi tiết
AH
7 tháng 2 2020 lúc 18:31

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 18:38

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 18:40

Bài 3:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$

Khi đó:

$\frac{3a^6+c^6}{3b^6+d^6}=\frac{3(bt)^6+(dt)^6}{3b^6+d^6}=\frac{t^6(3b^6+d^6)}{3b^6+d^6}=t^6(*)$

Và:

$\frac{(a+c)^6}{(b+d)^6}=(\frac{bt+dt}{b+d})^6=t^6(**)$

Từ $(*); (**)\Rightarrow $ đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
LN
2 tháng 9 2015 lúc 16:53

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2.\left(bk\right)^2-3.bk.b+5.b^2}{2b^2+3.bk.b}\)=\(\frac{2.b^2.k^2-3.k.b^2+5.b^2}{2.b^2+3.b^2.k}=\frac{b^2\left(2.k^2-3.k+5\right)}{b^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2.\left(dk\right)^2-3.dk.d+5.d^2}{2.d^2+3.dk.d}\)\(=\frac{2.d^2.k^2-3.d^2.k+5.d^2}{2.d^2+3.d.k.d}\)=\(\frac{d^2\left(2.k^2-3.k+5\right)}{d^2\left(2+3.k\right)}=\frac{2.k^2-3.k+5}{2+3.k}\)

=> bằng nhau

Bình luận (0)
TD
2 tháng 9 2015 lúc 15:35

thế thì chúc bạn may mắn

Bình luận (0)
NC
25 tháng 8 2017 lúc 16:48

Bằng nhau pạn nhé. Mjk ko tjện giảj nha pạn tự làm nha.

Bình luận (0)