1/1+3+1/1+3+5+...+1/1+3+5+...+2021
a, 1-2+3-4+5-6+....+2021-2022
b, 1-6+2-7+3-8+4-9+.......+35-40
c, -1+2-3+4-5+6-.........-2021+2022
d, 1-4+2-5+3-6+.....+197-200
e, -1-2-3-4-5-....-199-200
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175
Chứng tỏ rằng: 1/3^3 + 1/5^3 + 1/7^3 +..+ 1/2021^3 < 1/12
Ta có \(\dfrac{1}{3^3}< \dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)
\(\dfrac{1}{5^3}< \dfrac{1}{4.5.6}=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}\right)\\ ...\\ \dfrac{1}{2021^3}< \dfrac{1}{2020.2021.2022}=\dfrac{1}{2}\left(\dfrac{1}{2020.2021}-\dfrac{1}{2021.2022}\right)\)
Cộng VTV ta được
\(VT< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{2021.2022}\right)=\dfrac{1}{12}-\dfrac{1}{2\left(2021.2022\right)}< \dfrac{1}{12}\)
\(n^3=n.n^2>n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{2}.\dfrac{n+1-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)
\(\dfrac{1}{3^3}+\dfrac{1}{5^3}+.......+\dfrac{1}{2009^3}< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+.....\dfrac{1}{2008.2009.2010}=\dfrac{1}{2}\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.........+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{2009.2010}\right)\)
\(=\dfrac{1}{2}\)
Tính A=1/2×3×4+1/3×4×5+1/4×5×6+...+1/2019×2020×2021
Tính nhanh C=1/1*2*3+1/2*3*4+1/3*4*5+........+1/2021*2022*2023
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
Chứng minh rằng:\(\dfrac{1}{3^3}\)+\(\dfrac{1}{5^3}\)+\(\dfrac{1}{7^3}\)+...+\(\dfrac{1}{2021^3}\)\(\le\)\(\dfrac{1}{12}\)
Bài 1: Tính tổng:
a) S = 1+2+3+….+2021 b) P = 1+3+5+……+2021
c) Q = 2+4+6+.......+ 2020 d) M = 1+4+7+.....+298
a) \(S=1+2+3+...+2021\)
\(=\left(2021+1\right).2021:2\)
\(=2043231\)
b) \(P=1+3+5+...+2021\)
\(=\left(2021+1\right).[\left(2021-1\right):2+1]:2\)
\(=2022.1011:2\)
\(=1022121\)
B=(1-1/5)x(1-2/5)x 1-3/5)x.....x(1-2021/5) MONG MỌI NGƯỜI GIÚP MÌNH
*Thực hiện
1/ (\(\dfrac{2021}{2020}\)+\(\dfrac{2020}{2021}\)) x (\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\))
2/ (\(\dfrac{7}{19}\)-\(\dfrac{5}{12}\)):\(\dfrac{-5}{8}\)-(\(\dfrac{7}{19}\)-\(\dfrac{29}{12}\)):\(\dfrac{5}{8}\)
3/ \(\dfrac{-5}{6}\)x\(\dfrac{7}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{14}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{3}{24}\)
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
mink chịu bài này nó rất khó
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25