Chứng minh M=396+397+398 chia hết cho 13.
Chứng minh
32+33+34+...+397 chia hết cho 4 và 13
A=32+33+34+...+397
3A=33+34+35+...+398
3A-A=(33+34+35+...+398)-(32+33+34+...+397)
2A=398-32
A=(398-32): 2
⇒A=(398-32): 2
thế nhé chúc em học tốt :>>☺
ez
+) 32+33+34+...+397
= (32+33)+...+ (396+397)
= 32.(1+3)+...+396.(1+3)
=32.4+...+396.4
=4.(32+...+396)
Vì 4⋮4 nên 4.(32+...+396)⋮4
+)P sau lm như p1 nhx là nhóm 3 số với nhau
còn chia hết cho 4 và 13 thì a wên cách làm r :>>
Cho S = 1+3+32+33+......+398. Chứng minh rằng S chia hết cho 13.
Giúp em với ạ, em cảm ơn
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
so sánh A và B biết
A = 1+3+5+7+.....+397+399
B = 2+4+6+8+.....+396+398
A = 1 + 3 + 5 + 7 + .......... + 397 + 399
A có số số hạng là:
( 399 - 1 ) : 2 + 1 = 200 ( số hạng )
A có kết quả là:
( 399 + 1 ) x 200 : 2 = 40000
B = 2 + 4 + 6 + 8 + .......... + 396 + 398
B có số số hạng là:
( 398 - 2 ) : 2 + 1 = 199 ( số hạng )
B có kết quả là:
( 398 + 2 ) x 199 : 2 = 39800
Vì 40000 > 39800 nên A > B
tks : D tớ cx đang định làm như thế : D
\(A=1+3+5+....+399=\frac{\left[\left(399-1\right):2+1\right]\left(399+1\right)}{2}=39000\)
\(B=2+4+.....+398=\frac{\left[\left(398-2\right):2+1\right]\left(398+2\right)}{2}=39850\)
Vậy ..
10, chứng minh rằng : A chia hết cho 180 và A chia hết cho 396 biet A = 143 . 3025 . 2012
Cho S = 1-3 + 32-33 +....+398-399 . Chứng minh rằng S chia hết cho 20 , giúp mk nhanh nha
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
Chứng minh rằng nếu ( m + 4n ) chia hết cho 13 thì 10 m+n chia hết cho 13
\(m+4n⋮13\Rightarrow3m+12n⋮13\)
Xét tổng: \(A=3m+12n+10m+n=13m+13n⋮13\)
Chứng minh theo chiều xuôi, ta có \(m+4n⋮13,10m+n⋮13\)
\(\Rightarrow A⋮13\)
Mà \(m+4n⋮13\Rightarrow3m+12n⋮13\)
\(\Rightarrow10m+n⋮13\)(đpcm)
[Chứng minh theo chiều ngược:
\(A⋮13\)
Mà \(10m+n⋮13\)
\(\Rightarrow3m+12n⋮13\)
\(\Rightarrow3\left(m+4n\right)⋮13\)
\(\Rightarrow m+4n⋮13\) (đpcm)]
1+2+3+5+6+7+9+10+11+13+...+395+397+398+399
Tính 1+3-5-7+9-11-13+15+16-17-18+19+...-397-398
Chứng minh rằng m+4n chia hết cho 13 khi và chỉ khi 10m+n chia hết cho 13 (với n,m thuộc N)
Lời giải:
Chiều xuôi:
$m+4n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow 13(m+n)-3(m+4n)\vdots 13$
$\Rightarrow 10m+n\vdots 13(1)$
----------------
Chiều ngược:
$10m+n\vdots 13$
$\Rightarrow 13(m+n)-(10m+n)\vdots 13$
$\Rightarrow 3m+12n\vdots 13$
$\Rightarrow 3(m+4n)\vdots 13$
$\Rightarrow m+4n\vdots 13$ (2)
Từ $(1); (2)\Rightarrow m+4n\vdots 13$ khi và chỉ khi $10m+n\vdots 13$
Chứng minh rằng: m + 4n chia hết cho 13 khi và chỉ khi 10m + n chia hết cho 13 ( với mọi m , n thuộc N )
m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13
CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):
A chia hết cho 13
Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
=> 10m + n chia hết cho 13
CM theo chiều ngược:
A chia hết cho 13
Mà 10m + n chia hết cho 13
=> 3m + 12n chia hết cho 13
=> 3(m + 4n) chia hết cho 13
Mà (3,13) = 1
=> m + 4n chia hết cho 13
Vậy:.
Ta có: 10m+n chia hết cho 13
=>10m chia hết cho 13
mà 10 không chia hết cho 13 nên m chia hết cho 13
=>n chia hết cho 13 nên 4n chia hết cho 13
=>m+4n chia hết cho 13
=>đpcm(ghi lại đề)
m+4n : 13
: la chia het ban nha