tìm ngiệm nguyên của bất phương trình x6 - 2x3 - 6x2 - 6x - 17 < 0
\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)
\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)
\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)
- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)
Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))
\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)
- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)
\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)
(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)
\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)
\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))
\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)
Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)
\(\Rightarrow x=\left\{-1;0;1;2\right\}\)
Thay vào BPT ban đầu thử thấy đều thỏa mãn
Vậy \(x=\left\{-1;0;1;2\right\}\)
Có bao nhiêu giá trị nguyên của m để phương trình sau vô nghiệm x 6 + 3 x 5 + 6 x 4 − m x 3 + 6 x 2 + 3 x + 1 = 0
A. Vô số
B. 26
C. 27
D. 28
Có bao nhiêu giá trị nguyên của m để phương trình sau vô nghiệm:
x 6 + 3 x 5 + 6 x 4 - m x 3 + 6 x 2 + 3 x + 1 = 0
A. Vô số
B. 26
C. 27
D. 28
Đáp án C.
⇒ Chia 2 vế phương trình cho x 3 ta được:
x 3 + 1 x 3 + 3 x 2 + 1 x 2 + 6 x + 1 x = m (*)
Đặt t = x + 1 x ⇒ t ≥ 2 , phương trình (*) m = t 3 + 3 t 2 + t - 6
Xét f ( t ) = t 3 + 3 t 2 + 3 t - 6 trên ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )
f ' ( t ) = 0 ⇔ t = - 1
Bảng biến thiên:
⇒ f ( t ) ∈ ( - ∞ ; - 8 ] ∪ [ 20 ; + ∞ ) ∀ t ∈ ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )
⇒ Phương trình f (t) vô nghiệm ⇔ m ∈ - 8 ; 20
⇒ Có 27 giá trị m nguyên thỏa mãn.
Không phải lớp 3 nhe nhầm lớp rùi
1. Tìm nghiệm nguyên của phương trình : x^2 + ( x+ 1)^2 = y^4 + (y+1)^4
2.tìm ngiệm nguyên của phương trình : x^2 - 3y^2 =17
Cho hàm số f ( x ) = 2 x 3 - 6 x 2 + 3 Số nghiệm của phương trình f(f(x))=0 là
A. 6
B. 9
C. 3
D. 8
Giải phương trình
a) 2x3+6x2=x2+3x
b) (2+x)2-(2x-5)2=0
`2x^3 +6x^2 =x^2 +3x`
`<=> 2x^3 +6x^2 -x^2 -3x=0`
`<=> 2x^3 +5x^2 -3x=0`
`<=> x(2x^2 +5x-3)=0`
`<=> x(2x^2 +6x-x-3)=0`
`<=> x[2x(x+3)-(x+3)]=0`
`<=> x(2x-1)(x+3)=0`
\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
b)
`(2+x)^2 -(2x-5)^2=0`
`<=> (2+x-2x+5)(2+x+2x-5)=0`
`<=> (-x+7)(3x-3)=0`
\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
`a) 2x^3 + 6x^2 = x^2 + 3x`
`=> 2x^3 + 6x^2 - x^2 - 3x = 0`
`=> 2x^3 + 5x^2 - 3x = 0`
`=> x(2x^2 + 5x - 3) = 0`
`=> x (2x^2 + 6x - x - 3) = 0`
`=> x [(2x^2 + 6x) - (x+3)] = 0`
`=> x [2x(x+3) - (x+3)] = 0`
`=> x (2x - 1)(x+3) = 0`
`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`
`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`
`b) (2+x)^2 - (2x-5)^2 = 0`
`=> (2+x+2x-5)(2+x-2x+5) = 0`
`=> (3x - 3)(7-x) = 0`
`=> 3x - 3 = 0` hoặc `7 - x = 0`
`=> x = 1` hoặc `x = 7`
Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình 3 − 2 x 3 ≤ 4
A. x = −31
B. x = −30
C. x = −32
D. x = −29
Tìm điều kiện của x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến x: x x 2 - 36 - x - 6 x 2 + 6 x : 2 x - 6 x 2 + 6 x + x 6 - x
Biểu thức xác định khi x 2 - 36 ≠ 0 , x 2 + 6 x ≠ 0 , 6 – x ≠ 0 và 2x – 6 ≠ 0
x 2 - 36 ≠ 0 ⇒ (x – 6)(x + 6) ≠ 0 ⇒ x ≠ 6 và x ≠ -6
x 2 + 6 x ≠ 0 ⇒ x(x + 6) ≠ 0 ⇒ x ≠ 0 và x ≠ -6
6 – x ≠ 0 ⇒ x ≠ 6
2x – 6 ≠ 0 ⇒ x ≠ 3
Vậy x ≠ 0, x ≠ 3, x ≠ 6 và x ≠ -6 thì biểu thức xác định.
Ta có:
Vậy biểu thức không phụ thuộc vào biến x.
Bài 3 :Cho bất phương trình : 3x(2x + 5) x(6x -1) + 4
a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số.
b) Tìm nghiệm nguyên nhỏnhất của bất phương trình trên.