Những câu hỏi liên quan
H24
Xem chi tiết
HS
28 tháng 5 2021 lúc 16:48

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Bình luận (0)

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Bình luận (3)

Bình luận (0)
VL
Xem chi tiết
KA
22 tháng 12 2016 lúc 9:59

Vì 243 = 9 x 27 nên 243 chia hết cho 9 và 243a chia hết cho 9

Vì 657 = 9 x 27 nên 657 chia hết cho 9 và 657b chia hết cho 9

Theo tính chất chia hết cho một tổng.Suy ra 243a + 657b chia hết cho 9 với mọi a;b thuộc N

Bình luận (1)
TM
Xem chi tiết
H24
18 tháng 8 2017 lúc 7:31

 Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 
Chúc sớm tìm được thêm nhiều lời giải nha!

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Bình luận (0)
TN
17 tháng 8 2017 lúc 17:51

Theo đề ta có :

n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)

= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)

= n\(^2\) + 5n - n\(^2\) - 2n + 3n  + 6 

= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6

= 0 + 6n +6

= 6(n+1) luôn luôn chia hết cho 6

Vậy biểu thức   n(n + 5) - (n - 3)(n + 2)  luôn luôn chia hết cho 6 (đpcm)

k vs kb với mik nhé,      3     

Bình luận (0)
H24
17 tháng 8 2017 lúc 17:41

 Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Bình luận (0)
TE
Xem chi tiết
ST
13 tháng 7 2018 lúc 17:39

Ta có: 10n + 72n - 1 = 99...9 (n chữ số 9) + 1 + 72n - 1

= 99...9 (n c/s 9) + 72n

= 9(11...1 + 8n)

= 9[9n + (11...1 - n)]

Có: số 11...1 và n khi chia cho 9 có cùng số dư 

=> 11...1 - n chia hết cho 9

Mà 9n chia hết cho 9

=> 9n + (11...1 - n) chia hết cho 9

=> 9[9n + (11....1 - n)] chia hết cho 81 

Vậy...

Bình luận (0)
NP
Xem chi tiết
H24
20 tháng 11 2018 lúc 10:28

10n+72-1=10n-1-9n+81n

=999.....99(n chữ số)-9n+81n

=9(1111...1(n chữ số)+n)+81n

Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9

nên 1111...1(n chữ số)-n chia hết cho 9

=> 9(111...1(n chữ số)-n) chia hết cho 81

Mà 81n cũng chia hết cho 81

=> 10n+72n-1 chia hết cho 81 với 

n E N

Bình luận (0)
TH
20 tháng 11 2018 lúc 10:31

như shitbo đó,tk mk vs nha,please

Bình luận (0)
DG
20 tháng 11 2018 lúc 10:46

Ta có:

 \(10^n+72n-1\)

=\(10^n-1+72n\)

=\(\left(10-1\right)\left(10^{n-1}+10^{n-2}+...+10+1\right)+72n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1\right)-9n+81n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1-n\right)+81n\)

=\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n\)

Vì:

 \(10^n-1=\left(10-1\right)\left(10^{n-1}+...+10+1\right)⋮9\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]⋮81\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n⋮81\)

\(\Rightarrow10^n+72n-1⋮81\left(đpcm\right)\)

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
LM
Xem chi tiết
DH
11 tháng 8 2016 lúc 10:35

1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)

A=\(\frac{n\left(n+1\right)}{2}\)-7

Để a chia hết cho 10 thì \(\frac{n\left(n+1\right)}{2}\) có tận cùng 7 tức là n(n+1) có tận cùng 4

vô lí vì tích 2 số liên tiếp chi có tận cùng là 0, 2, 6 nên A không chia hết cho 10

Bình luận (0)
AT
11 tháng 8 2016 lúc 10:25

đề thiếu gì thì p bạn ạ

Bình luận (0)
LM
11 tháng 8 2016 lúc 10:26

đúng đề rùi mà bạn

Bình luận (0)