Những câu hỏi liên quan
NM
Xem chi tiết
TP
3 tháng 11 2019 lúc 10:14

tui chịu mấy má

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
CH
22 tháng 7 2017 lúc 22:57

Ta đặt \(A=\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\) . Ta sẽ phân tích A thành nhân tử:

\(A=\left(x-y+y-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4-\left(z-x\right)^4\right]\)

\(A=\left(x-z\right).B\)

Ta phân tích \(\left(y-z\right)^4-\left(z-x\right)^4=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x+y-2z\right)\left(y-x\right)\)

và \(\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3\)

\(=\left(x-y\right)\left[\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\right]\)

Đặt \(C=\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\)

 \(D=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x-z+y-z\right)\)

\(=\left(x-z\right)\left(y-z\right)^2+\left(y-z\right)^3-\left(z-x\right)^3+\left(y-z\right)\left(z-x\right)^2\)

\(C-D=\left(y-z\right)\left[-\left(x-y\right)^2-3\left(y-z\right)^2-\left(z-x\right)^2-\left(x-y\right)^2+\left(x-y\right)\left(z-x\right)-\left(z-x\right)^2\right]\)

 \(=\left(y-z\right)\left[5\left(-x^2+xy-y^2-z^2+yz+zx\right)\right]\)

Vậy \(A=5\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Vậy \(A=\left(x-z\right)\left(x-y\right)\left(y-z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

nên chia hết cho \(5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Bình luận (0)
TN
23 tháng 7 2017 lúc 19:30

e ko hỉu khúc C-D cho lắm

Bình luận (0)
HD
Xem chi tiết
UN
Xem chi tiết
DH
24 tháng 8 2017 lúc 13:39

Đặt \(x-y=a;y-z=b;\Rightarrow z-x=-b-a\)

\(\Rightarrow\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5=a^5+b^5+\left(-a-b\right)^5\)

\(=\left(a^5+b^5\right)+\left(-a^5-5a^4b-10a^3b^2-10a^2b^3-5ab^4-b^5\right)\)

\(=-5a^4b-10a^3b^2-10a^2b^3-5ab^4\)

\(=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)

\(=-5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)

\(=-5ab\left(a+b\right)\left(a^2+ab+b^2+a+b\right)⋮-5ab\left(-a-b\right)\)

Hay \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5⋮5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)(đpcm)

Bình luận (0)
CT
17 tháng 2 2021 lúc 10:17

agdfghsegergerg

Bình luận (0)
 Khách vãng lai đã xóa
LT
17 tháng 2 2021 lúc 10:19
What tờ heo
Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
LL
17 tháng 9 2021 lúc 18:28

\(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)

Do \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 5, một số chia hết cho 2 và một số chia hết cho 3\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2.3.5=30\)

Mặt khác: \(x\left(x-1\right)\left(x+1\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮6\)\(\Rightarrow5x\left(x-1\right)\left(x+1\right)⋮5.6=30\)

\(\Rightarrow x^5-x=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)⋮30\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}y^5-y⋮30\\z^5-z⋮30\end{matrix}\right.\)

\(\Rightarrow\left(x^5+y^5+z^5\right)-\left(x+y+z\right)⋮30\)

Mà \(x+y+z=2010⋮30\)

\(\Rightarrow x^5+y^5+z^5⋮30\)

 

Bình luận (0)
VZ
Xem chi tiết
H24
Xem chi tiết
H24
22 tháng 10 2021 lúc 10:52

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
H24
Xem chi tiết