Những câu hỏi liên quan
BN
Xem chi tiết
NT
Xem chi tiết
NN
15 tháng 6 2023 lúc 12:45

\(A=\dfrac{3}{2^2}+\dfrac{8}{3^2}+\dfrac{15}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{2023^2}\)

\(A=(1+1+1+...+1)-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..+\dfrac{1}{2023^2})\)

Tổng số hạng của 2 ngoặc trên bằng nhau và =(2023-2):1+1=2022(số hạng)

\(A=2022-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2})\)

Ta thấy:

\(0<\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)

Ta có

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{2022}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}<1\)

Do đó,2021<A<2022 

Vậy giá trị của A không phải 1 số tự nhiên(đpcm)

Bình luận (0)
H24
20 tháng 3 2024 lúc 21:19

Ko bt

Bình luận (0)
VG
Xem chi tiết
H24
Xem chi tiết
HL
20 tháng 3 2023 lúc 22:21

�=322+832+1542+....+20232-120232

�=1-122+1-132+1-142+....+1-120232

�=2022-(122+132+142+...+120232)

Bình luận (0)
VM
9 tháng 4 2023 lúc 15:52

322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=

1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1

2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A

122+132+142+.... <20232

Bình luận (0)
BN
26 tháng 4 2024 lúc 23:03

k

 

Bình luận (0)
TM
Xem chi tiết
NT
21 tháng 12 2023 lúc 19:43

Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)

\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)

=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)

=>\(3A=2^{2024}-1\)

mà \(2\cdot B=2^{2024}\)

nên 3A và 2B là hai số tự nhiên liên tiếp

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TT
11 tháng 5 2023 lúc 19:44

Ta có thể viết lại M dưới dạng:

M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)

= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]

= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)

= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)

Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có

1/n³ > 1/(n+1)³

Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,

1/2³ > 1/3³
1/3³ > 1/4³

1/2022³ > 1/2023³

Vậy ta có

M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³

Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.

Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:

S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³

Với mọi số nguyên dương n, ta có:

1/n³ < 1/n(n-1)

Do đó,

1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...

1/2023³ < 1/(2023x2024)

Tổng các số hạng bên phải có thể được viết lại dưới dạng:

1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1

Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.

   
Bình luận (0)