Những câu hỏi liên quan
NH
Xem chi tiết
ND
4 tháng 11 2017 lúc 21:37

Chia f(x) cho x+1 thì dư 6 => \(f\left(x\right)-6⋮x+1\)

hay \(x^2+ax+b-6⋮x+1\)

Làm tính chia đa thức ta được: \(\left(x^2+ax+b-6\right):\left(x+1\right)=x-1+a\)

và dư ra \(b-a-5\)

Mà phép tính trên chia hết \(\Rightarrow b-a-5=0\Leftrightarrow b-a=5\)(1)

Tương tự: \(x^2+ax+b-3⋮x-2\)

Ta có: \(\left(x^2+ax+b-3\right):\left(x-2\right)=x+2+a\)

dư ra \(2a+b+1\). Phép chia chia hết \(\Leftrightarrow2a+b+1=0\Leftrightarrow2a+b=-1\)(2)

Từ (1) và (2) \(\Rightarrow2a+b-\left(b-a\right)=-1-5\)

\(\Leftrightarrow2a+b-b+a=-6\)

\(\Leftrightarrow3a=-6\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Thay \(a=-2,b=3\)vào \(f\left(x\right):\)

\(f\left(x\right)=x^2-2x+3\)

Vậy...

Bình luận (0)
PT
Xem chi tiết
AH
31 tháng 3 2023 lúc 20:54

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$

Bình luận (0)
NM
Xem chi tiết
LL
Xem chi tiết
HL
Xem chi tiết
AH
1 tháng 10 2019 lúc 0:21

Lời giải:

Áp dụng định lý Bê-du về phép chia đa thức ta có:

\(\left\{\begin{matrix} f(-1)=6\\ f(2)=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1-a+b=6\\ 4+2a+b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-2\\ b=3\end{matrix}\right.\)

Vậy đa thức $f(x)$ là $x^2-2x+3$

Bình luận (0)
DT
Xem chi tiết
LB
Xem chi tiết
XO
27 tháng 1 2022 lúc 19:27

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

Bình luận (0)
XO
27 tháng 1 2022 lúc 19:37

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

Bình luận (0)
NT
Xem chi tiết
MH
Xem chi tiết
NM
22 tháng 10 2021 lúc 20:33

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

Bình luận (0)
NM
22 tháng 10 2021 lúc 20:59

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

Bình luận (0)