Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NN
Xem chi tiết
PN
Xem chi tiết
CA
Xem chi tiết
PL
23 tháng 7 2019 lúc 20:05

\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

Bình luận (0)
VT
Xem chi tiết
LC
6 tháng 9 2017 lúc 20:33

M=(\(\frac{\sqrt{x}}{\sqrt{x}+1}\)-1): \(\frac{-1}{x+\sqrt{x}+1}\)

M=\(\frac{-1}{\sqrt{x}+1}\).  -(x+\(\sqrt{x}\)+1)

M=\(\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

b, x=1 

M = \(\frac{3}{2}\)

c, M= 0 

=> x +\(\sqrt{x}\)+1= 0

mặt khác x+\(\sqrt{x}\)+1 = (\(\sqrt{x}\)+0,5)2+0,75 >0

=> x vô nghiệm........

Bình luận (0)
NQ
Xem chi tiết
TM
1 tháng 10 2017 lúc 11:00

\(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left[\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}< 1\)

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
NT
7 tháng 8 2020 lúc 21:08

a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)

b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)

\(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)

nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)

\(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1(nhận)

Vậy: để M>0 thì x>1

Bình luận (0)