Những câu hỏi liên quan
NA
Xem chi tiết
NT
10 tháng 5 2022 lúc 21:49

1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)

=>3x-1/5=3/25 hoặc 3x-1/5=-3/25

=>3x=8/25 hoặc 3x=2/25

=>x=8/75 hoặc x=2/75

2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)

=>2x-1/3=2/9 hoặc 2x-1/3=-2/9

=>2x=5/9 hoặc 2x=1/9

=>x=5/18 hoặc x=1/18

Bình luận (0)
BK
Xem chi tiết
EC
12 tháng 8 2021 lúc 9:24

đúng

Bình luận (0)
NA
Xem chi tiết
EN
10 tháng 5 2022 lúc 23:39

1.\(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{3}-x=\dfrac{3}{5}\\\dfrac{1}{3}-x=-\dfrac{3}{5}\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{15}\\x=\dfrac{14}{15}\end{matrix}\right.\)

2.\(\left(5-x\right)^2=25\Leftrightarrow\left[{}\begin{matrix}5-x=5\\5-x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
TT
2 tháng 3 2020 lúc 19:01

Đặt \(a=24-x,b=x-25\)

Khi đó pt ban đầu trở thành :

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)

\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow30a^2+68ab+30b^2=0\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)

Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H24
10 tháng 7 2023 lúc 21:08

\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)

\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)

\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)

\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)

Bình luận (0)
NT
10 tháng 7 2023 lúc 20:55

a: =>(x+2-3)(x+2+3)=0

=>(x-1)(x+5)=0

=>x=1 hoặc x=-5

b: =>(x-1)^2=25

=>x-1=5 hoặc x-1=-5

=>x=-4 hoặc x=6

c: =>25x^2+10x+1-25x^2+9=30

=>10x+10=30

=>x+1=3

=>x=2

d: =>x^3-1-x(x^2-4)=5

=>x^3-1-x^3+4x=5

=>4x=6

=>x=3/2

Bình luận (0)
PD
Xem chi tiết
NT
24 tháng 8 2021 lúc 21:06

Ta có: \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+3\right)^3+\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3\)

\(=x^3+125-x^3-9x^2-27x-27+x^3-8-x^3+3x^2-3x+1\)

\(=-6x^2-30x+91\)

Bình luận (0)
KN
Xem chi tiết
NT
31 tháng 5 2023 lúc 8:41

a: TH1: x>=2

A=x+x-2=2x-2

TH2: x<2

A=x+2-x=2

b: TH1: x>=3

A=x-3-x=-3

TH2: x<3

A=3-x-x=-2x+3

c: TH1: x>=1

C=x-x+1=1

TH2: x<1

C=x+x-1=2x-1

d: TH1: m>=3

C=m-3-2m=-3-m

TH2: m<3

C=-m+3-2m=-3m+3

e: TH1: m>=1

E=m-m+1=1

TH2: m<1

E=m+m-1=2m-1

Bình luận (0)
LJ
Xem chi tiết
LN
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
Bình luận (0)
DL
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 21:21

Bài 1:

\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2\cdot50=100\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2\cdot52=104\)

=>A<B

Bài 2:

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

=>\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)

=>\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

=>4x+13=11

=>4x=-2

=>\(x=-\dfrac{1}{2}\)

Bình luận (0)
NK
Xem chi tiết
H24
7 tháng 7 2023 lúc 12:18

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

Bình luận (0)