Chứng tỏ các biểu thức sau là số chính phương
1+3+5+...+2n-1
chứng tỏ biểu thức sau là số chính phương
1+3+5 +...+ (2n-1)
chứng tỏ các biểu thức sau là số chính phương
13+ 23+ 33+43 + 53+63
\(1^3+2^3+3^3+4^3+5^3+6^3\)
\(=1+8+27+64+125+216\)
\(=441=21^2\)
Mình có 1 cách chứng minh biểu thức này đúng với mọi số tự nhiên n :) Bạn có thể tham khảo.
Ta sẽ sử dụng quy nạp.
Nếu bạn chưa học quy nạp thì mình giải thích ngắn gọn thế này : Bây giờ mình cần chứng minh biểu thức nào đó đúng với mọi n, ví dụ A chia hết cho n với mọi n, hoặc A > n với mọi n :). Số n chỉ là mình đặt ra, bạn có thể đặt a,b,c,d,... tùy ý, miễn là nó tượng trưng.
Bây giờ ta có 1 số bất kỳ thỏa mãn biểu thức đó, tức là giả sử tồn tại số n nào đó mà khiến cho biểu thức đúng, ta chỉ cần chứng minh số liền sau của k cũng thỏa mãn thì biểu thức hoàn toàn đúng với mọi n.
Ta sẽ chứng minh \(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Với n = 1 thì đẳng thức đúng.
Với n > 1. Coi tồn tại số n thỏa mãn đẳng thức trên. \(\Rightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Ta sẽ chứng minh n + 1 cũng thỏa mãn.
Ta có :
\(1^3+2^3+...+n^3+\left(n+1\right)^3\)
\(=\left(1+2+3+...+n\right)^2+\left(n+1\right)^3\)
\(=\left[\frac{n\left(n+1\right)}{2}\right]^2+\left(n+1\right)^3\)
\(=\left(n+1\right)^2.\frac{n^2}{4}+\left(n+1\right)^2\frac{4n+4}{4}\)
\(=\frac{\left(n+1\right)^2\left[n^2+4n+4\right]}{4}\)
\(=\frac{\left(n+1\right)^2.\left(n+2\right)^2}{4}\)
\(=\left[\frac{\left(n+1\right)\left(n+2\right)}{2}\right]^2\)
Chắc chắn \(\left(n+1\right)\left(n+2\right)\)chia hết cho 2, nên biểu thức đó là một số chính phương.
Vậy biểu thức này đúng với mọi n :\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Ví dụ bài của bạn vừa rồi :
\(1^3+2^3+...+6^3=\left(1+2+3+...+6\right)^2=21^2\)
chứng tỏ rằng số sau là số chính phương: A=1+3+5+...+(2n-1) với n thuộc N
Sô các số là : (2n-1) :2 +1 = n-1
Ta có : (2n -1 +1 ) . (n -1 ) :2 = ( 2n -2 ) . ( n -1 ) :2
= 2 ( n -1 ) .( n-1)
= ( n-1 ) . ( n - 1) = ( n -1 ) 2
Các bạn nên để ý đề , trong câu tương tự là "+" còn đây là " - "
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
chứng tỏ rằng số sau là số chính phương: A=1+3+5+...+(2n-1) với n thuộc N
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ: 0; 1; 4; 6; 16;...). Chứng tỏ rằng 1 + 3 + 5 +...+(2n - 3) + (2n - 1) là một số chính phương.
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Chứng tỏ biểu thức sau không phải là số chính phương:
A=1+11^11+111^111+3
Chứng tỏ : 1+3+5+...+(2n+1) là một số chính phương
\(1+3+5+...+\left(2n+1\right)\)
số số hạng của dãy trên là : \(\left(2n+1-1\right):2+1=n+1\)
tổng dãy trên là:\(\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
suy ra dãy trên là một số chính phương
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
Chứng tỏ M = 1 + 3 + 5 + ... + ( 2n - 1 ) ( với n thuộc N ) là 1 số chính phương
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:
(2n-1+1)n:2=n.n=n2
=>đpcm
Số số hạng là :
(2n + 1 - 1) : 2 + 1 = n + 1 (số hạng)
Do đó \(M=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2.\left(n+1\right).\left(n+1\right)}{2}=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
Vậy M là số chính phương