Những câu hỏi liên quan
TV
Xem chi tiết
LA
Xem chi tiết
RH
27 tháng 12 2023 lúc 20:44

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

Bình luận (0)
NN
Xem chi tiết
TL
19 tháng 3 2023 lúc 17:03

Thay `b=5a+2c` vào `ax^2+bx+c=0`:

`ax^2+(5a+2c)x+c=0`

`=>Delta=(5a+2c)^2-4ac`

`=25a^2+20ac+4c^2-4ac`

`=25a^2+16ac+4c^2`

`=9a^2+(16a^2+16ac+4c^2)`

`=9a^2+(4a+2c)^2>=0`

`=>` ĐPCM

Bình luận (0)
NN
Xem chi tiết
H24
26 tháng 10 2017 lúc 15:26


a) ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có 

x1 + x2 + x3 + x4 ≥ 4

Bình luận (0)
NN
26 tháng 10 2017 lúc 15:43

Đọc nhầm đề bạn ơi =))

Bình luận (0)
CH
Xem chi tiết
NS
Xem chi tiết
TL
30 tháng 5 2015 lúc 20:57

\(\Delta\) = b2 - 4ac = (5a + 2c)2 - 4ac = 25a2 + 20ac + 4c2 - 4ac = 25a2 + 16ac + 4c2 

= 9a2 + (16a2 + 16ac + 4c2)

= 9a2 + (4a + 2c)2 \(\ge\) 0 với mọi a; c

=> Pt đã cho luôn có nghiệm

Bình luận (0)
MA
Xem chi tiết
NL
2 tháng 3 2022 lúc 14:38

Đặt \(f\left(x\right)=ax^2+bx+c\)

Hàm f(x) liên tục trên R

Ta có:  \(f\left(1\right)=a+b+c\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c\)

\(\Rightarrow f\left(1\right)+f\left(\dfrac{1}{2}\right)=\dfrac{5a}{4}+\dfrac{3b}{2}+2c=0\)

\(\Rightarrow f\left(1\right)=-f\left(\dfrac{1}{2}\right)\)

\(\Rightarrow f\left(1\right).f\left(\dfrac{1}{2}\right)=-\left[f\left(1\right)\right]^2\le0\)

\(\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left[\dfrac{1}{2};1\right]\) hay pt đã cho luôn có nghiệm

Bình luận (0)
LT
Xem chi tiết
LC
31 tháng 3 2017 lúc 14:11

╔══╗
╚╗╔╝
╝(¯`v´¯)
╚══`.¸.Your lover’s name

╔♫═╗╔╗ ♥
╚╗╔╝║║♫═╦╦╦╔╗
╔╝╚╗♫╚╣║║║║╔╣
╚═♫╝╚═╩═╩♫╩═╝ ஜ۩۞۩ஜ YOU ஜ۩۞۩ஜ

▂ ▃ ▅ ▆ █ Type your status message █ ▆ ▅ ▃ ▂
★·.·´¯`·.·★ Type your status message ★·.·´¯`·.·★
..♩.¸¸♬´¯`♬.¸¸¤ Type your status message o ¤¸¸.♬´¯`♬¸¸.♩..
♬ •♩ ·.·´¯`·.·♭•♪ Type your status message e ♪ •♭·.·´¯`·.·♩ •♬
»——(¯` Type your status message ´¯)——» ¸
.·’★¸.·’★*·~-.¸-(★ Type your status message ★)-,.-~*¸.·’★¸.·’★
(♥).•*´¨`*•♥•(★) Type your status message (★)•♥•*´¨`*•.(♥)
• ♥ⓛⓞⓥⓔ♥☜ facebook emoons ☞♥ⓛⓞⓥⓔ♥
◢♂◣◥♀◤ facebook emoons ◢♂◣◥♀◤ ¸
.•♥•.¸¸.•♥• Type your status message •♥•.¸¸.•♥•.¸
☜♥☞ º°”˜`”°º☜(Type your status message )☞ º°”˜`”°☜♥☞

                                              k mk nha

Bình luận (0)
HT
3 tháng 5 2020 lúc 9:24

toán lớp mấy đấy???

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 5 2020 lúc 9:25

Ta có : (4a – b)^2 ≥ 0 ⇔16a^2 – 8ab + b^2 ≥ 0 (1)

Mà phương trình : ax^2 + bx + c = 0 vô nghiệm nên: ∆ = b^2 – 4ac < 0 ⇔ 4ac > b^2  (2)

Từ (1) và (2) => 16a^2 – 8ab + 4ac > 16a^2 – 8ab + b^2> 0

=> 16a^2 – 8ab + 4ac > 0 => 4a(4a – 2b + c) > 0

=> 4a – 2b + c > 0 do (a > 0 => 4a > 0)

=> a + b + c + 3a – 3b > 0 => a + b + c > 3(b – a) =>  > 3

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết