Tìm x,y biết rằng: (3x-5)100 + (2y+1)200\(\le\)0
Tìm x và y biết rằng:
(3x−5)100+ (2y+1)200 < hoặc = 0
Có: (3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2(3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2 \geq 00
\Rightarrow BPT có nghiệm \Leftrightarrow {3x−5=02y+1=0{3x−5=02y+1=0 \Rightarrow {x=53y=−12{x=53y=−12
Vì \(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+1\right)^{200}\ge0\end{cases}\Rightarrow\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\ge0}\)
Theo đề bài:\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
=>\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)
=>\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+1\right)^{200}=0\end{cases}}\)
=>\(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-1}{2}\end{cases}}\)
Vậy \(x=\frac{5}{3}\) và \(y=\frac{-1}{2}\)
Tìm x và y biết rằng
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\) lớn hơn hoặc bằng0
Vì mũ của số trên là 100 và 200, đều là số chẵn
Không số nào trong số trên là số âm
Tổng là số vô âm
Tổng của chúng bằng 0
Các hiệu: (3x - 5) ; Các tổng: (2y + 1)
\(\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=-0,5\)
Vậy: \(x=\frac{5}{3};y=-0,5\)
Tìm x biết:
a)(3x-5)100+(2y+1)200 < hoặc bằng 0
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\le0\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
Tìm x, y biết
a, \(\left(x+1\right)^2+\left(y-5\right)^2=0\)
b, \(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)
a) x+1=y-5=0
=>x=-1, y=5
b)3x-5=2y+1=0
=>x=5/3, y=-1/2
ý quên, (y-5)^2 chuyển thành (y-5)^4
1, a, Tìm x;y biết:
(3x-5)100+(2y-1)200=0
b, CMR: 62n+4+3n+4+3n+2 chia hết cho 11
Giúp mk vs!!! Help me!!!
Tìm các số nguyên x, y biết
A) (3x-5)100+(2y+1)200 bé hơn hoặc bằng 0
B). (x+2)2 +2.(y-3)2<4
Tìm các sô tự nhiên x,y
A) 2x+1.3y=12x
B) 10x : 5y= 20y
cho \(0< x< y\le z\le1\)
và \(3x+2y+z\le4\)
tìm max=\(3x^2+2y^2+z^2\)
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24
Tham khảo
Khai triển Abel ta có:
\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)
\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)
\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)
\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)
Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)