Những câu hỏi liên quan
NC
Xem chi tiết
TT
Xem chi tiết
TL
1 tháng 5 2015 lúc 19:33

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)}{b\left(b+n\right)}-\frac{a.\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{\left(b-a\right).n}{b\left(b+n\right)}=\frac{n}{b\left(b+n\right)}.\left(b-a\right)\)

Nếu a\(\le\) b => b - a \(\ge\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\ge0\Rightarrow\frac{a+n}{b+n}\ge\frac{a}{b}\)

Nếu a \(\ge\) b => b - a \(\le\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\le0\Rightarrow\frac{a+n}{b+n}\le\frac{a}{b}\)

Vậy.......

Bình luận (0)
H24
1 tháng 5 2015 lúc 19:41

 

Admin kìa                                                                       

Bình luận (0)
DH
8 tháng 3 2017 lúc 21:03

1-a+n\b+n=b+n=b-a\b+n

nếu a<b thì a\b là so sánh phần bù 

nếu a=b thì a\b=a+n\b+n

Bình luận (0)
UK
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
H24
15 tháng 9 2017 lúc 12:36

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

Bình luận (0)
HS
11 tháng 7 2019 lúc 17:02

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

Bình luận (0)
BP
1 tháng 9 2020 lúc 21:22

Ta có:a/b=a.(b+n)

                =a.b+a.n/b.(b+n)

a+n/b+n=(a+n).b/(b+n).b

             =a.b+b.n/b.(b+n)

-->a/b<a+n/b+n

       

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
31 tháng 5 2024 lúc 0:48

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

Bình luận (0)
TN
Xem chi tiết
AH
30 tháng 3 2023 lúc 18:52

Lời giải:

$\frac{a+n}{b+n}-\frac{a}{b}=\frac{b(a+n)-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}$

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}>0$

$\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}<0$

$\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}=0$

$\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

Bình luận (0)
H24
Xem chi tiết
PU
Xem chi tiết