Cho 1/c=1/2(1/a+1/b) (a,b,c thuộc Z,b-c khác 0)
Cmr:a/b=a-c/b-c
cho 1/c=1/2*(1/a+1/b) (a,B,C khác 0, b khác c) cmr:a/b=a-c/c-b
ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{b+a}{ab}\)
\(\Rightarrow2ab=c\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
tíc mình nha
Bài 1 : Tìm x , y thuộc Z ( y khác 0 ) sao cho x/3 = 1/y = 1/2
Bài 2 : Cho 1/c = 1/2.(1/a + 1/b ) ( với a , b,c khác 0 ; b khác c ) . Chứng minh rằng : a/b = a-c / c-b
Cho a,b,c khác 0 và thỏa mãn: 2ab+1 trên 2b=2bc+1 trên c=ac+1 trên a CMR:a=2b=c hoặc 4a^2.b^2.c^2=1
Đáp án:
Cho a,b,c thỏa mãn:
2ab(2b-a)-2ac(c-2a)-2bc(b-2c)= 7abc
CMR:Tồn tại 1số bằng 2 số kia.
Giải thích các bước giải:
Cho a/b=c/d khác +-1 và c khác 0
CMR:a,(a-b/c-d)^2=a.d/c.d;
b,(a+b/c+d)^3=a^3-b^3=c^3-d^3
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
Cho a,b,c khác 0 và thỏa mãn: 2ab+1 trên 2b=2bc+1 trên c=ac+1 trên a
CMR:a=2b=c hoặc 4a^2.b^2.c^2=1
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
Cho a,b,c là các hằng số và a khác -1, b khác -1, c khác -1. Chứng minh rằng nếu x=b*y+c*z; y=a*x+c*z; z=a*x+b*y; x+y+z khác 0 thì 1/(1+a)+1/(1+b)+1/(1+c)=2
Hãy biến đổi 1/5 thành dạng tổng 1/a+1/b+1/c sao cho a,b,c thuộc Z; a khác b khác c khác 0. Tìm a.b.c(có thể có nhiều đáp án khác nhau)