cho A=1/2+1/3+1/4+.....+1/2016[co 2015 số hạng].Chứng minh rằng A>21/11
Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........+\frac{1}{2016}\) ( có 2015 số hạng. CHứng minh rằng A >\(\frac{21}{11}\)
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\) (có 2015 số hạng). Chứng minh rằng A>\(\frac{21}{11}\)
A=1/2+1/3+1/4+...+1/2016(co 2015 so hang).Chung minh A>21/11
a)Cho tổng sau gồm 2015 số hạng: A= \(\frac{1}{1^2}+\frac{1}{2^3}+\frac{1}{3^4}+....+\frac{1}{2015^{2016}}\)
Chứng minh rằng giá trị của A không là số nguyên.
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
A=1/2+1/3+1/4+1/5+...+1/2016.Chứng minh rằng A>21/11
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
CHO TỔNG SAU GOM 2015 SO HANG A=1/1^2+1/2^3+1/3^4+...+1/2015^2016
CHỨNG MINH RẰNG GIÁ TRỊ CỦA A KHÔNG LÀ SỐ NGUYÊN