Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........+\frac{1}{2016}\) ( có 2015 số hạng. CHứng minh rằng A >\(\frac{21}{11}\)
A=1/2+1/3+1/4+...+1/2016(co 2015 so hang).Chung minh A>21/11
a)Cho tổng sau gồm 2015 số hạng: A= \(\frac{1}{1^2}+\frac{1}{2^3}+\frac{1}{3^4}+....+\frac{1}{2015^{2016}}\)
Chứng minh rằng giá trị của A không là số nguyên.
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
A=1/2+1/3+1/4+1/5+...+1/2016.Chứng minh rằng A>21/11
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
CHO TỔNG SAU GOM 2015 SO HANG A=1/1^2+1/2^3+1/3^4+...+1/2015^2016
CHỨNG MINH RẰNG GIÁ TRỊ CỦA A KHÔNG LÀ SỐ NGUYÊN
Cho A = 1/2 + 1/3 +1/4 + .............. +1/2016 . Chứng minh rầng A > 21/11
Cho biểu thức A=\(\left(2015^{2016}-1\right)\left(2015^{2016}+1\right)\)
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12