Những câu hỏi liên quan
DX
Xem chi tiết
LM
8 tháng 4 2021 lúc 21:06

dễ thấy =))

 

Bình luận (1)
G2
Xem chi tiết
H24

gọi 5 số bất kì là a1,a2,a3,a4,a5

theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

TH2 :chỉ có 2 số có cùng số dư khi chia cho 3 

nếu r=0 thì a1+a3+a5 chia hết cho 3

nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3

tương tự với r=2

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 3 2020 lúc 10:28

Gọi 5 số bất kì là a1,a2,a3,a4,a5

Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

=> Ta có 2 TH:

+ TH1 : Có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

+ TH2 : Chỉ có 2 số có cùng số dư khi chia cho 3 

Giả sử a1 ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3) ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3)

+ Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3

+ Nếu r = 1 thì a3 = 3k+2 hoặc a3 = 3k nên a1 + a3 + a5 chia hết cho 3

Bạn làm tương tự như vậy với TH r = 2 nhé

Bình luận (0)
 Khách vãng lai đã xóa
TL
1 tháng 3 2020 lúc 10:30

Gọi 5 số tự lần lượt là a1;a2;a3;a4;a5

≡a2≡r(mod3);a3≡a4(mod3)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

nếu r=0 thì a1+a3+a5 chia hết cho 3

nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3

tương tự với r=2

 
Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
PT
Xem chi tiết
DH
Xem chi tiết
PN
20 tháng 2 2018 lúc 9:38

số đó là 333,666,999

Bình luận (0)
DA
Xem chi tiết
TM
29 tháng 11 2021 lúc 20:57

Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
TL
17 tháng 9 2015 lúc 22:45

a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0  hoặc 1

=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1. 

=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2

b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4

=> Khi chia 6 số tự nhiên bất kì cho 5,  số dư  bằng1 trong 5 số 0; 1; 2; 3; 4.

=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư

=> Hiệu của chúng chia hết cho 5

Vậy...

 

Bình luận (0)
NQ
1 tháng 11 2016 lúc 20:29
Gửi câu trả lời của bạnHãy gửi một câu trả lời để giúp Trần Diệu Linh giải bài toán này, bạn có thể nhận được điểm hỏi đáp và phần thưởng của Online Math dành cho thành viên tích cực giúp đỡ các bạn khác trên Online Math!              
Bình luận (0)
NQ
1 tháng 11 2016 lúc 20:32

bài trên đúng

Bình luận (0)
NH
Xem chi tiết
KH
Xem chi tiết
LK
3 tháng 11 2017 lúc 20:56

Gọi 11 số tự nhiên liên tiếp lần lượt là: 

\(a;a+1;a+2;a+3;...;a+10\)

Ta nhận thấy rõ ràng có 1 cặp số có hiệu chia hết cho 10. Đó chính là

 \(a+10-a=10⋮10\)(đpcm)

Mik làm 11 số liên tiếp mà số cuối cộng 10 để chứng minh rằng có ít nhất 2 số có hiệu chia hết cho 10

Bình luận (0)
TT
18 tháng 11 2018 lúc 20:58

gọi 11 số tự nhiên liên tiếp lần lượt là :

a:a+1:a+2:a+3:....:a+10

ta nhận thấy rõ ràng có 1 cặp số có hiệu chia hết cho 10 . đó chính là :

a + 10 - a = 10 \(⋮\) 10 ( đpcm)

Bình luận (0)