3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3
3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3
Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10
Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.
Ai trả lời nhanh nhất và đúng nhất thì mình sẽ tick cho người đấy và kết bạn nha !!!!
Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.
chứng tỏ rằng
a , trong 3 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 2
b , trong 6 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 5
chứng minh rằng
a, trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10
b, cho dãy số a1,a2,a3,...........a2015 chứng mnh luôn tồn tại hai số có hiệu chia hết cho 2014
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tai ít nhất 2 số có hiệu chia hết cho10
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.