6.Chứng minh :
(9931999 - 5571997) : hết cho 5
có lời giải mình mk cho
Chứng minh:
(9931999-5571997)⋮5
ko thể vì hiệu của [ 9931999 - 5571997] có chữ số tận cùng là 2 mà những số chia hết cho 5 thì phải có chữ số tận cùng là 0 và 5
k mk nha
Chu y : ngoac tron cua mk bi hong nen viet ngoac vuong vay thoi chu khi lam bai ban phai dùng ngoặc tròn nha ^_^ hihi
Không chia hết vì tận cùng có chữ số 2
9-7=2
a)Chứng minh rằng 2002 mũ n nhân 2005 mũ n + 1 chia hết cho 1,5 và 10
b)6 mũ 1000 - 2 chia hết cho 5
Ai nhanh mình like cho,lời giải chi tiết nha mọi người
Chứng minh rằng tích 3 số tự nhieenlieen tiếp chia hết cho 6
Ai nhanh nhất mk sẽ tick nhé, mình cảm ơn trước, rõ ràng câu trả lời dàm nha
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
B=3+32+33+...+3120. Chứng minh rằng:
a)B chia hết cho 3
b)B chia hết cho 4
c)B chia hết cho 13
Mọi người cho mình lời giải chi tiết nhé.
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
Cho 3a + 2b chia hết cho 17 ( a, b thuộc N ). Chứng minh rằng: 10a + b chia hết cho 17
Mình đang cần câu trả lời rất gấ..........................p , ai tả lời đúng và nhanh nhất mình tick cho ( nhớ có lời giải nữa nha)
Chứng minh rằng:6100-1chia hết cho 5.
Bạn nào trả lời nhanh mk tick cho
+ Cách 1:Do 6 chia 5 dư 1, mũ lên bao nhiẻu vẫn chia 5 dư 1
=> 6100 chia 5 dư 1
=> 6100 - 1 chia hết cho 5 ( đpcm)
+ Cách 2: Ta có:
6100 - 1 = (64)25 - 1 = (...6)25 - 1 = (...6) - 1 = (...5) chia hết cho 5
=> đpcm
Ta có :
6100 - 1
= (64)25 - 1 = .....6 - 1 = ....5 chia hết cho 5
Vậy 6100 - 1 chia hết cho 5 (ĐPCM)
Ủng hộ mk nha !!! ^_^
Vì 6^100 có tận cùng là 6
=>6^100-1 có tận cùng là 5
=>6 ^100- 1 chia hết cho 5
Vay........
Bài 1. Chứng minh rằng ; 5^1+5^2+5^3+...+5^2004 chia hết cho 126
Bài 2: x+2y+xy=50
Các bạn ơi giúp mình với! mình cần gấp... trả lời 1 trong 2 bài cũng được, mk sẽ tích cho ai trả lời nhanh nhất.( Trình bày cả cách giải)
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
4/ Chứng minh rằng :
a. 76 +75 – 74 chia hết cho 11 .bạn nào giúp mk với ạ .giải thích cho mình hiểu luôn với ạ mình tick ✔cho
4/ Chứng minh rằng :a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
Câu 1:
Chứng minh rằng 2^1995 - 1 chia hết cho 31...
Câu 2:
Chứng minh rằng 3012^93 -1 chia hết cho 13
Mình đang cần lời giải gấp nhé...
Ai nhanh và đúng nhất mình tick cho .....
Bài 1
\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)
Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)
\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)
hay
\(\left(2^{1995}-1\right)⋮31\)
Bài 2
Làm tương tự