Những câu hỏi liên quan
LD
Xem chi tiết
H24
Xem chi tiết
H24
10 tháng 8 2018 lúc 20:53

 x + {(x - 3) - [(x + 3) - (-x - 2)]} = x

=> x + {x - 3 - [x + 3 + x + 2]} = x

=> x + {x - 3 - x - 3 - x - 2} = x

=> x + x - 3 - x - 3 - x - 2 = x

=> (x - x) + (x - x) - (3 + 3 + 2) = x

=> 0 + 0 - 8 = x

=> - 8 = x

vậy x = - 8

Bình luận (0)
NC
10 tháng 8 2018 lúc 20:56

=>(x-3)-[(x+3)-(-x-2)]=0

=>(x-3)-(x+3+x+2)=0

=>x-3-2x-5=0

=>-x-8=0

=>-x=8=>x=-8

Bình luận (0)
DM
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:44

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

Bình luận (0)
PL
Xem chi tiết
GT
12 tháng 10 2023 lúc 19:28

               Mẹ là ánh sáng của con 

         Soi đường chỉ lối cho con suốt đời 

              Mẹ là một người tuyệt vời 

       Nâng bước con tới cuộc đời sáng tươi

Bình luận (0)
DM
Xem chi tiết
AH
27 tháng 8 2023 lúc 21:55

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$. Khi đó:

$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$

$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$

Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$

-------------------

$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$

$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$

Bình luận (0)
DM
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:44

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

Bình luận (0)
MA
Xem chi tiết
NT
23 tháng 12 2021 lúc 10:07

e: \(E=\dfrac{x^2-9-x^2+4-x^2+9}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x+2}{x+3}\)

a: \(A=\dfrac{4x^2+x^2-2x+1+x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{6x^2+2}{\left(x-1\right)\left(x+1\right)}\)

Bình luận (1)
NM
23 tháng 12 2021 lúc 11:54

\(A=\dfrac{-4x^2+x^2-2x+1-x^2-2x-1}{\left(1-x\right)\left(1+x\right)}=\dfrac{-4x\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}=\dfrac{4x}{x-1}\\ C=\dfrac{-x^2-4x-4+x^2-4x+4-4x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x}{2-x}\\ E=\dfrac{x^2-9-x^2+4x-4-x^2+9}{\left(x-2\right)\left(x+3\right)}=\dfrac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}=\dfrac{2-x}{x+3}\)

Bình luận (0)
NA
Xem chi tiết
LN
Xem chi tiết