Cho p là số nguyên tố lớn hơn 2.Tìm số dư của A = 3p - 2p khi chia cho 3
Cho p là số nguyên tố lớn hơn 2. Số dư của A=3p-2p khi chia cho 3 là.......
x+x+x+x+x+x+x+x+x+x=46595+x+x+x+x+12
=> x*10 = 46607+x*4
=> x*10 - x*4 =46607
=> x*6 = 46607
=> x = 7767.833333..... chia ko hết
vậy x = 7767.83333333....chia ko hết
duyệt nha các bn
Cho p,q là hai số nguyên tố lớn hơn 5:
a) Tìm số dư khi chia 2018p - 2017q cho 3.
b) CMR: \(\frac{3p^5+5p^3+7p}{15}\)là số nguyên.
ta có : 2018p \(\equiv\)2p (mod 3)
Vì là SNT > 5 => p lẻ
=> 2p \(\equiv\)2 (mod 3)
2017q \(\equiv\)1 (mod 3)
=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)
Vậy 2018p - 2017q chia 3 dư 1
b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)
Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4
+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)
Từ (1) và (2) và (3;5) = 1 => 3p5 + 5p3 + 7p \(⋮\)15
=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)
bài 4 cmr A= p8n+3p4n-4 chia hết cho 5 biết p và 5 là 2 số nguyên tố cùng nhau và p là số nguyên
bài 5 cho p và 2p+1 là 2 số nguyên tố p lớn hơn 3 chứng minh 4p+1 là hợp số
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
Cho p là số nguyên tố lớn hơn 2. Tìm số dư của A=3p-2p khi chia cho 3
câu này mình thử
nếu p bằng 3 (cho dễ tính)
thì ta có :
3^3-2^3=1
1 / 3 dư 1
a) 1 số nguyên tố P khi chia cho 42 có số dư Y là hợp số. Tìm số dư Y.
b) Cho b là 1 số nguyên tố lớn hơn 3. Hỏi P2+2018 là số nguyên tố hay hợp số.
a)Ta có
p = 42k + y = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )
Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Cho p là số nguyên tố lớn hơn 2. Số dư của khi A=3^p-2^p chia cho 3 là
cho p là số nguyên tố lớn hơn 2. Số dư của A = 3^p -2^p khi chia cho 3 là....
CHO P LÀ SỐ NGUYÊN TỐ LỚN HƠN 2. SỐ DƯ CỦA A = 3^P - 2^P KHI CHIA CHO 3 =?
Mk đgcần gấp ao trả lời cho bn nè đi
Cho p là số nguyên tố lớn hơn 3
a, tìm số dư khi p2 chia cho 3
b, hỏi p2 +2015 là nguyên tố hay hợp số
a, Vi p la snt >3 suy ra p khong chia het cho3 suy ra p2 khong chia het cho 3 suy ra p2 la so chia 3 du 1 vay p2 la so chia 3 du 1 b,vi p la no nguyen to lon hon 3 nen p la so le suy ra p2 la so le suy ra p2+2015 la so chan suy ra p2+2015chia het cho 2, ma p2+2015 lon hon 2 suy ra p2+2015 la hop so