Những câu hỏi liên quan
DC
Xem chi tiết
H24
16 tháng 12 2019 lúc 21:00

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
BH
12 tháng 12 2017 lúc 15:55

P=4x2+4xy+y2+x2-4x+4+y2+8y+16+5

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5

Ta nhận thấy: \(\hept{\begin{cases}\left(2x+y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall y\end{cases}}\)

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5 \(\ge\)5  Với mọi x, y

=> GTNN của P là Pmin = 5

Đạt được khi: 

\(\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(x-2\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2&y=-4&\end{cases}}\)

Bình luận (0)
PX
Xem chi tiết
TM
14 tháng 7 2017 lúc 13:50

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

Bình luận (0)
TM
14 tháng 7 2017 lúc 13:59

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

Bình luận (0)
LH
Xem chi tiết
LA
14 tháng 8 2016 lúc 22:14

Ta có: P= \(5x^2+4xy+y^2+6x+2y+2016\)

          =  \(\left(4x^2+y^2+1+4x+2y+4xy\right)+\left(x^2+2x+1\right)+2014\)

         =  \(\left(2x+y+1\right)^2+\left(x+1\right)^2+2014\ge2014\)

(Vì \(\left(2x+y+1\right)^2\ge0;\left(x+1\right)^2\ge0\))

Dấu = khi \(\hept{\begin{cases}2x+y+1=0\\x+1=0\end{cases}< =>}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

Vậy min P =2014 khi x=-1; y=1

Bình luận (0)
BL
Xem chi tiết
TN
10 tháng 9 2017 lúc 19:34

\(a,A=3x^2-5x+1\)

\(=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}\)

\(=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\)

Với mọi giá trị của x ta có:

\(\left(x-\dfrac{5}{6}\right)^2\ge0\)

\(\Rightarrow3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)

Vậy Min \(A=-\dfrac{13}{12}\)

Để \(A=-\dfrac{13}{12}\) thì \(x-\dfrac{5}{6}=0\Rightarrow x=\dfrac{5}{6}\)

\(b,B=2x^2+5y^2-4x+2y+4xy+2017\)

\(=\left(2x^2-4x+4xy\right)+5y^2+2y+2017\)

\(=2\left(x^2-2x+2xy\right)+5y^2+2y+2017\)

\(=2\left[x^2-2x\left(1-y\right)+\left(1-y\right)^2\right]+5y^2+2y+2017+2\left(1-y\right)^2\)\(=2\left(x-1+y\right)^2+5y^2+2y+2017-2\left(1-y\right)^2\)

\(=2\left(x+y-1\right)^2+5y^2+2y+2017-2+4y-2y^2\)\(=2\left(x+y-1\right)^2+3y^2+6y+2015\)

\(=2\left(x+y-1\right)^2+3\left(y^2+2y+1\right)+2012\)

\(=2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\)

Với mọi giá trị của x ta có:

\(2\left(x+y-1\right)^2\ge0;3\left(y+1\right)^2\ge0\)

\(\Rightarrow2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\ge2012\) Vậy : Min B = 2012

Để B = 2012 thì \(\left\{{}\begin{matrix}x+y-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NS
Xem chi tiết
AH
2 tháng 1 2021 lúc 17:52

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$

Bình luận (0)
NS
Xem chi tiết
VL
Xem chi tiết
H24
14 tháng 6 2018 lúc 10:57

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
H24
14 tháng 6 2018 lúc 11:03

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)