Những câu hỏi liên quan
PA
Xem chi tiết
ST
18 tháng 10 2017 lúc 13:51

a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)

=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)

b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

Bình luận (0)
HQ
7 tháng 11 2017 lúc 15:16

a, Gọi A = 4a+2b−ca−b−c 

Đặt a2 =b5 =c7 =k⇒{

a=2k
b=5k
c=7k

=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110 

b, Ta có: {

x2≥0
|y−3|≥0
 

∀x,y⇒A=x2+|y−3|+5≥5

Dấu "=" xảy ra khi {

x2=0
|y−3|=0

⇒{

x=0
y=3

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

Bình luận (0)
DA
Xem chi tiết
VM
Xem chi tiết
VM
6 tháng 11 2016 lúc 16:30

giúp tôi với

\

Bình luận (0)
TP
2 tháng 4 2017 lúc 16:01

i dont no because Iam grade 6

hi hi

Bình luận (0)
MS
21 tháng 11 2017 lúc 22:36

cái này giở lí thuyết lớp 7 là ra đợi tí nha! lên lớp 8 nên quên

Bình luận (0)
.
Xem chi tiết
TA
31 tháng 10 2020 lúc 22:04

Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :

1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )

Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .

\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)

\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)

\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)

\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))

Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết
TK
Xem chi tiết
LD
Xem chi tiết
NL
Xem chi tiết
NH
14 tháng 10 2016 lúc 12:16

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

Bình luận (0)
NH
14 tháng 10 2016 lúc 12:24

mấy bài sau làm tương tự nhu câu 1

Bình luận (0)
NN
Xem chi tiết
H24
6 tháng 9 2020 lúc 16:34

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

Bình luận (0)
 Khách vãng lai đã xóa
PN
7 tháng 9 2020 lúc 20:18

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa