Đặt \(\frac{a}{2}\)\(=\)\(\frac{b}{5}\)\(=\)\(\frac{c}{7}\)\(=\)K
=> a=2K
b=5k
c=7k
=> \(\frac{4a+2b-c}{a-b-c}\)= \(\frac{8k+10k-7k}{2k-5k-7k}\)= \(\frac{k.\left(8+10-7\right)}{k.\left(2-5-7\right)}\)= \(\frac{8+10-7}{2-5-7}\)= \(\frac{-11}{10}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k\)
\(b=5k\)
\(c=7k\)
\(\Rightarrow\frac{4a+2b-c}{a-b-c}\)
\(=\frac{4\left(2k\right)+2\left(5k\right)-7k}{2k-5k-7k}\)
\(=\frac{\left(8+10-7\right)k}{\left(2-5-7\right)k}\)
\(=-\frac{11}{10}\)
Vậy ...