Những câu hỏi liên quan
LQ
Xem chi tiết
TN
Xem chi tiết
NM
24 tháng 6 2016 lúc 9:02

a/

+ \(\frac{1}{243^6}=\frac{1}{3^6.81^6}=\frac{1}{3^2.3^4.81^6}=\frac{1}{9.81^7}\) (1)

+ \(80< 81\Rightarrow80^7< 81^7\Rightarrow\frac{1}{80^7}>\frac{1}{81^7}\) (2)

+ \(81^7< 9.81^7\Rightarrow\frac{1}{81^7}>\frac{1}{9.81^7}\) (3)

Từ (1) (2) (3) \(\Rightarrow\frac{1}{80^7}>\frac{1}{243^6}\)

b/ Xem lại đề bài


 

Bình luận (0)
TN
Xem chi tiết
an
25 tháng 2 2020 lúc 10:19

(3/8)5= 35/(23)5=243/215>243/315>125/315=53/(35)3=(5/35)3=(5/243)3

suy ra (3/8)5>(5/243)3

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
ST
7 tháng 5 2017 lúc 21:19

a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)

\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)

Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)

b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)

\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)

Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)

c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)

Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)

d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)

g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)

\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)

h, Vì E < 1 nên:

\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)

Vậy E = F

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
HT
Xem chi tiết
RP
Xem chi tiết
NT
7 tháng 4 2021 lúc 20:25

a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)

mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)

nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

Bình luận (0)
DT
7 tháng 4 2021 lúc 21:13

\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)

\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)

\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)

\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)

Bình luận (0)
DT
7 tháng 4 2021 lúc 21:04

\(\left(\dfrac{1}{80}\right)^7\&\left(\dfrac{1}{243}\right)^6\)

\(\dfrac{1}{80}>\dfrac{1}{81}=\dfrac{1}{3^4}\)

\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{3^4}\right)^7=\dfrac{1}{3^{7.4}}=\dfrac{1}{3^{28}}>\dfrac{1}{3^{30}}\)

\(=\dfrac{1}{\left(3^5\right)^6}=\left(\dfrac{1}{243}\right)^6\)

\(=>\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)

Bình luận (0)