tim x y biet x^2+y^2 + z^2 -xy-3y-2z+4=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim x y z thoa man x2+y2+z2-xy-3y-2z+4=0
tìm x, y, z biết x^2+y^2+z^2-xy-3y-2z+4=0
tìm x ; y ; z nguyên sao cho : x^2 + y^2 + z^2 -xy -3y - 2z + 4 = 0
Đề:
Giá trị của y thoả mãn x2 + y2 + z2 = xy + 3y + 2z - 4 với x, y, z \(\in\) Z.
Giải:
x2 + y2 + z2 = xy + 3y + 2z - 4
x2 - xy + y2 - 3y + z2 - 2z + 4 = 0
\(x^2-2\times x\times\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}-3y+3+z^2-2z+1=0\)
\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y^2}{4}-2\times\frac{y}{2}\times1+1^2\right)+\left(z-1\right)^2=0\)
\(\left(x-\frac{y}{2}\right)+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
\(\left\{\begin{matrix}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\\z-1=0\end{matrix}\right.\)
\(\frac{y}{2}=1\)
\(y=2\)
ĐS: 2
~ Nana ~
toan 7 tim x,y,z biet (xy/2y+4x)=(yz/4z+6y)=(zx/6x+2z)=(x^2+y^2+z^2)/2^2+4^2+6^2
Tìm tất cả các số \(x,y,z\) nguyên thỏa mãn: \(x^2+y^2+z^2-xy-3y-2z+4=0\)
tim x,y,z thuoc Zduong thoa man
x^2+y^2+z^2<xy+3y+2z
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
tìm x,y,z nguyên
x2+y2+z2-xy-3y-2z+4=0
x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0
\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0
\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)
tìm x,y,z nguyên
x2+y2+z2-xy-3y-2z+4=0
Lời giải:
Nhân $4$ vào cả hai vế, phương trình trở thành:
\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)
Vì \((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên
\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)
Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)
Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT
Ta có \(x^2+y^2+z^2-xy-3y-2z+4=0\)
Nhân cả 2 vế với 4
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+\left(2z-2\right)^2=0\left(1\right)\)
Vì \(\left(2x-y\right)^2\ge0;\) \(3\left(y-2\right)^2\ge0;\) \(\left(2z-2\right)^2\ge0\)
Để xảy ra (1) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\2z-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)
Vậy \(x^2+y^2+z^2-xy-3y-2z+4=0\) tại x = 1; y = 2; z = 1