Những câu hỏi liên quan
MD
Xem chi tiết
NK
13 tháng 11 2015 lúc 21:44

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120

Bình luận (0)
NT
13 tháng 11 2015 lúc 20:55

CHTT 

đề bồi dưỡng à

Bình luận (0)
NN
13 tháng 11 2015 lúc 20:56

tra google ko co nen ko tra loi dc dung ko .............................................................................................................................................

Bình luận (0)
LP
Xem chi tiết
NT
25 tháng 10 2021 lúc 22:06

a: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=4n\left(2n+2\right)⋮8\)

Bình luận (0)
TY
Xem chi tiết
DT
12 tháng 9 2015 lúc 17:36

 

f(n) = n^5-5n^3+4n

=n5-n3-4n3+4n

=n3.(n2-1)-4n.(n2-1)

=n(n2-1)(n2-4)

=n.(n-1)(n+1)(n-2)(n+2)

ta có: n+1 và n là hai số nguyên liên tiếp nên: n.(n-1) chia hết cho 2

n-1;n;n+1 là ba số nguyên liên tiếp nên: n(n-1)(n+1) chia hết cho 3

n-1;n;n+1;n+2 là bốn số nguyên liên tiếp nên: n(n-1)(n+1)(n+2) chia hết cho 4

n-2;n-1;n;n+1;n+2 là năm số nguyên liên tiếp nên n.(n-1)(n+1)(n-2)(n+2) chia hết cho 5

Suy ra: n.(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.4.5=120

Vậy f(n) chia hết cho 129 với mọi n thuộc Z

Bình luận (0)
NL
Xem chi tiết
HA
Xem chi tiết
KD
3 tháng 11 2016 lúc 14:26

Ta có:

\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

\(=n\left(n^2-1\right)\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8

Mà ƯC\(_{\left(3;5;8\right)}\)=1

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:

3.5.8=120(đpcm)

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
UN
Xem chi tiết
TT
29 tháng 10 2017 lúc 9:45

n^5-5n^3+4n

=(n^5-n^4)+(n^4-n^3)-(4n^3-4n^2)-(4n^2-4n)

=n^4(n-1)+n^3(n-1)-4n^2(n-1)-4n(n-1)

=(n^4+n^3-4n^2-4n)(n-1)

=n(n^3+n^2-4n-4)(n-1)

=n[n^2(n+1)-4(n+1)](n-1)

=n(n^2-4)(n+1)(n-1)

=n(n-2)(n+2)(n+1)(n-1)

Mà 5 số tự nhiên liên tiếp chia hết cho 120

=> ĐPCM

Bình luận (0)
H24
Xem chi tiết
NG
27 tháng 3 2016 lúc 17:42

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

Bình luận (0)