CMR nếu : a/b = b/c = c/d thì a+b/c+d = b^2 + c^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
cho a,b,c khác 0 và a^2=b.c
CMR:a^2+c^2/b^2+d^2=c/b
CMR: nếu a/b=c/d thì a^2+b^2=b^2+d^2=a/d
Cmr nếu a/b=c/d thì
a. a+b/a-b=c+d/c-d
b. (a+b)^2/(a-b)^2=(c+d)^2/(c-d)^2
c. 2a+5b/3a-4b=2c+5d/3c-4d
cmr nếu a+c=2b và 2*b*d=c*(b+d) thì a/b=c/d với b,d khác 0
Ta có:2bd=c(b+d)
=>2bd=bc+cd
Mà a+c=2b (theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc (cùng bớt đi cd)
=>a/b=c/d (đpcm)
cho 2 ps a/b và c/d (b,d > 0). CMR nếu a/b < c/d thì a/b<a+c/b+d<c/d
CMR nếu a/b=c/d thì (a^2+b^2)/(b^2+d^2)=a/d
a. Áp dụng tính chất dãy tỉ số = nhau ta có:
x/4 = y/3 = z/9 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2
=> x/4 = 2 -> x = 8
y/3 = 2 -> y = 6
z/9 = 2 -> z = 18
Bài 1: CMR nếu (a+b+c+d)(a-b-c+d) = (a-b+c-d)(a+b-c-d) thì ad = bc
Bài 2: Tìm a,b,c biết a-1/0,2 = b-2/0,3 = c-3/0,4 và 3a + 2b - c = 10
cứ làm đi 3 con tích sẽ về ngay tay bn
Bài 1:
G/s ngược lại: \(ad=bc\) , ta cần CM giả thiết.
Ta có: \(ad=bc\) => \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) \(\left(k\inℤ\right)\)
Thay vào:
\(\left(a+b+c+d\right)\left(a-b-c+d\right)\)
\(=\left(bk+b+dk+d\right)\left(bk-b-dk+d\right)\)
\(=\left(k+1\right)\left(b+d\right)\left(k-1\right)\left(b-d\right)\) (1)
\(\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(=\left(bk-b+dk-d\right)\left(bk+b-dk-d\right)\)
\(=\left(k-1\right)\left(b+d\right)\left(k+1\right)\left(b-d\right)\) (2)
Từ (1) và (2) => GT được CM => đpcm
Bài 2:
Ta có: \(\frac{a-1}{0,2}=\frac{b-2}{0,3}=\frac{c-3}{0,4}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a-1}{0,2}=\frac{b-2}{0,3}=\frac{c-3}{0,4}=\frac{3a-3+2b-4-c+3}{0,6+0,6-0,4}=\frac{6}{0,8}=\frac{15}{2}\)
\(\Rightarrow\hept{\begin{cases}a-1=\frac{3}{2}\\b-2=\frac{9}{4}\\c-3=3\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=\frac{17}{4}\\c=6\end{cases}}\)
Cho số 2 hữu tỉ a/b và c/d với b > 0 ; d > 0 cmr nếu: a/b < c/d thì a/b < a+c/b+d < c/d.
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\left(1\right).\)Nhân 2 vế của (1) với bd ta có:
\(\frac{a}{b}\times bd=ad< \frac{c}{d}\times bd=bc\)( đpcm )
ad < bc ( 2 ).Chia 2 vế của (2) cho bd ta có:
\(\frac{ad}{bd}=\frac{a}{b}< \frac{bc}{bd}=\frac{c}{d}\left(Đpcm\right)\)
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d