tìm GTNN 5x^2+4y^2+4xy-6x-2y
tìm gtnn của
a)A=x^2-3x
b)B=2x^2-x
c)C=5x^2+4y-4xy-4x
d)D=x^2+5y-4xy-6x+8y+12
Bạn xem lại đề câu d nhé.
Bạn cũng cần xem lại đề câu c nhé.
Tìm GTNN của:
A=5x2+4y2+4xy-6x-2y
B=x2+5y2/4+xy+2x-y+3
C=x2-xy+y2-2x-2y
tìm GTNN hoặc GTLN của
a) 5x^2-12xy+9y^2-4x+4
b) -x^2-2y^2+12x-4y+7
c)4y^2+10x^2+12xy+6x+7
d)3-10x^2-4xy-4y^2
e)x^2-5x+y^2-xy-4y+16
giúp mình với T_T
thank nhiều nha ! :)
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)
Tìm GTNN của biểu thức P=5x2+4xy+y2+6x+2y+2016
Ta có: P= \(5x^2+4xy+y^2+6x+2y+2016\)
= \(\left(4x^2+y^2+1+4x+2y+4xy\right)+\left(x^2+2x+1\right)+2014\)
= \(\left(2x+y+1\right)^2+\left(x+1\right)^2+2014\ge2014\)
(Vì \(\left(2x+y+1\right)^2\ge0;\left(x+1\right)^2\ge0\))
Dấu = khi \(\hept{\begin{cases}2x+y+1=0\\x+1=0\end{cases}< =>}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)
Vậy min P =2014 khi x=-1; y=1
Tìm GTNN của: \(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)
\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)
\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)
=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015
=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]
=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015
giá trị nhỏ nhất là 2015
Tìm gtnn của:
A= 5x^2 +2y^2 -4xy -8x -4y +2031
\(A=5x^2+2y^2-4xy-8x-4y+2031\)
\(\Rightarrow5A=25x^2+10y^2-20xy-32x-16y+10155\)
\(=\left(25x^2-20xy+4y^2\right)+6\left(y^2-2\cdot\frac{8}{9}+\frac{64}{81}\right)+\left(10155-6\cdot\frac{64}{81}\right)\)
\(=\left(5x-2y\right)^2+6\left(y-\frac{8}{9}\right)^2+\left(10155-6\cdot\frac{64}{81}\right)\ge10155-6\cdot\frac{64}{81}\)
\(\Rightarrow A\ge2031-\frac{6}{5}\cdot\frac{64}{81}\)
Dấu "=" xảy ra tại \(y=\frac{8}{9};x=\frac{16}{45}\)
PS:Is that true ???
Gợi ý:
\(A=2\left(y-x-1\right)^2+3\left(x-2\right)^2+2017\ge2017\)
Đẳng thức xảy ra khi \(x=2;y=3\)
Vậy \(A_{min}=2017\Leftrightarrow x=2;y=3\)
zZz Cool Kid_new zZz sai từ dòng thứ 2, kiểm tra lại đi nhé.
Toán nâng cao:
Tìm GTNN của biểu thức: \(N=5x^2+2y^2+4xy-2x+4y+2015\)
\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)
\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)
\(( y^2 + 4y + 4 ) + 2010\)
\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)
\(\ge\)\(2010\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)
\(\Rightarrow\)\(x = 1 và y = - 2\)
\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)