(1/2+2x).(2x-3)=0
Tìm X
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x
1) (2x-1)(x+3)(2-x)=0
2)x^3 + x^2 + x + 1 = 0
3) 2x(x-3)+5(x-3) =0
4)x(2x-7)-(4x-14)=0
5) 2x^3 + 3x^2 + 2x + 3 = 0
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
Tìm x
(2x-3).(x+1)-2x^2+6x=0
(X^2-x+1).(x-3)-x^3+4x^2=0
(X^2-2).(x^2+2)-x^4-2x+5=0
(X-3).(x^2-3x+2)-(x^2-2x-7).(x-2)+2x^2-2x=0
( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0
<=> 2x2 - x - 3 - 2x2 + 6x = 0
<=> 5x - 3 = 0
<=> 5x = 3
<=> x = 3/5
( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0
<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0
<=> 4x - 3 = 0
<=> 4x = 3
<=> x = 3/4
( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0
<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0
<=> x4 + 1 - x4 - 2x = 0
<=> 1 - 2x = 0
<=> 2x = 1
<=> x = 1/2
( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0
<=> x3 - 6x2 + 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0
<=> 12x - 20 = 0
<=> 12x = 20
<=> x = 20/12 = 5/3
a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)
\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)
b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)
\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)
c ; d tương tự nhé !
Tìm x
a,x(x-2)-x(x-1)(x-3)=0
b,(2x-5).(x+3)-(x-1).(2x+3)=0
c,(x-2)(x^2+2x+8)-x^3-2x+1=0
a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)
\(\Leftrightarrow-x^3+5x^2-5x=0\)
\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)
a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)
\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)
\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)
=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)
\(\Leftrightarrow-12=0\left(vn\right)\)
c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)
\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)
\(\Leftrightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
a) x( x - 2 ) - x( x - 1 )( x - 3 ) = 0
<=> x2 - 2x - x( x2 - 4x + 3 ) = 0
<=> x2 - 2x - x3 + 4x2 - 3x = 0
<=> -x3 + 5x2 - 5x = 0
<=> -x( x2 - 5x + 5 ) = 0
<=> \(\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\)
+) -x = 0 => x = 0
+) x2 - 5x + 5 = 0 (*)
\(\Delta=b^2-4ac=\left(-5\right)^2-4\cdot1\cdot5==25-20=5\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{5+\sqrt{5}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{5-\sqrt{5}}{2}\end{cases}}\)
Vậy S = { \(0;\frac{5\pm\sqrt{5}}{2}\)}
b) ( 2x - 5 )( x + 3 ) - ( x - 1 )( 2x + 3 ) = 0
<=> 2x2 + x - 15 - ( 2x2 + x - 3 ) = 0
<=> 2x2 + x - 15 - 2x2 - x + 3 = 0
<=> -12 = 0 ( vô lí )
Vậy phương trình vô nghiệm
c) ( x - 2 )( x2 + 2x + 8 ) - x3 - 2x + 1 = 0
<=> x3 + 4x - 16 - x3 - 2x + 1 = 0
<=> 2x - 15 = 0
<=> 2x = 15
<=> x = 15/2
Bài 3: Tìm x biết:
a. \(2x+10=0\)
b. \(-2x+5=0\)
c. \(4-x=0\)
d. \(2x+1=0\)
e. \(x^2+2=0\)
f. \(2x+x=0\)
a)\(=>2x=-10=>x=-5\)
b)\(=>-2x=-5=>x=\dfrac{-5}{-2}=\dfrac{5}{2}\)
c)\(4-x=0=>x=4-0=4\)
d)\(=>2x=-1=>x=-\dfrac{1}{2}\)
e)\(=>x^2=-2\)=> x ko tồn tại
f)\(=>x\left(2+1\right)=0=>3x=0=>x=0\)
1.Tìm x
a,(2x-1)^2-(2x+3)(2x-1)=0
b,(x+5)(x-2)-(x-3)(x+3)=0
\(a,\left(2x-1\right)^2-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-3\right)=0\)
\(\Leftrightarrow-4\left(2x-1\right)=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(b,\left(x+5\right)\left(x-2\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+3x-10\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2+3x-10-x^2+9=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
a) (2x - 1)2 - (2x + 3)(2x - 1) = 0
<=> (2x - 1)(2x - 1 - 2x - 3) = 0
<=> (2x - 1).(-4) = 0
<=> 2x - 1 = 0
<=> x = 1/2
Vậy x = 1/2 là nghiệm phương trình
b) Ta có (x - 5)(x - 2) - (x - 3)(x + 3) = 0
<=> x2 - 7x + 10 - x2 + 9 = 0
<=> -7x + 19 = 0
<=> -7x = - 19
<=> x = 19/7
Vây x = 19/7 là nghiệm phương trình
Trả lời:
a, (2x - 1)2 - (2x + 3).(2x - 1) = 0
<=> (2x - 1).(2x - 1 - 2x - 3) = 0
<=> (2x - 1).(-4) = 0
<=> 2x - 1 = 0
<=> 2x = 1
<=> x =\(\frac{1}{2}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
b,(x + 5).(x - 2) - (x - 3).(x + 3) = 0
<=> x2 - 2x + 5x - 10 - (x2 - 9) = 0
<=> x2 + 3x - 10 - x2 + 9 = 0
<=> 3x - 1 = 0
<=> 3x = 1
<=> x = \(\frac{1}{3}\)
Vậy \(S=\left\{\frac{1}{3}\right\}\)
1.tìm x:
c.2x^2=x
d.x^3=x^5
e.x^2(x+1)+2x(x+1)=0
g.x(2x-3)-2(3-2x)=0
\(2x^2=x\)
\(\Rightarrow2x^2-x=0\)
\(x\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=\frac{1}{2}\)
\(x^3=x^5\)
\(\Rightarrow x^5-x^3=0\)
\(x^3.\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=1\)
\(x^2.\left(x+1\right)+2x\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2+2x\right)=0\)
\(x.\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)hoặc \(x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)hoặc \(x=-2\)
Vậy \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\) hoặc \(x=-2\)
\(x.\left(2x-3\right)-2\left(3-2x\right)=0\)
\(x.\left(2x-3\right)+2.\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}}\)
Vậy \(x=\frac{3}{2}\)hoặc \(x=-2\)
\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
\(S\left\{0;\frac{1}{2}\right\}\)
\(d)x^3-x^5=0\Leftrightarrow x^3\left(1-x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{1}\end{cases}}\)
\(S=\left\{0;\pm\sqrt{1}\right\}\)
các câu sau tương tự nha bn
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Tìm x:
a, 3x (4x -3) - 2x (5-6x) = 0
b, 5 (2x-3) + 4x (x-2) + 2x (3-2x) = 0
c, 3x (2-x) + 2x (x-1) = 5x (x+3)
d, 3x (x+1) - 5x (3-x) + 6(x2 + 2x + 3) = 0
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
d) \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
Mà \(14x^2+18>0\)nên pt vô nghiệm
tìm x : a (1/2+2x)(2x -3)=0
b 1/4 -(2x +1/2)^2 =0
a)
`(1/2+2x)(2x-3)=0`
\(=>\left[{}\begin{matrix}\dfrac{1}{2}+2x=0\\2x-3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
b)
`1/4-(2x+1/2)^2=0`
`=>(2x+1/2)^2=1/4`
\(=>\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ =>\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)